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Introduction by the Organisers

This meeting had 27 participants from 10 countries (Argentina[2], Belgium[3],
Canada[2], China[3], France[4], Germany[1], Norway[3], Russia[2], UK[1], and the
US[6]) and 20 lectures were presented during the five day period. The extended
abstracts of these lectures are presented on the following pages in chronological
order.

This workshop fostered exchange of knowledge and ideas between various re-
search areas, developed existing collaborations, and identified new directions of
research by bringing together leading researchers and young colleagues from Al-
gebraic Geometry (in its classical and its noncommutative version), Singularity
Theory, Representation Theory of Algebras, Commutative Algebra, and Algebraic
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Topology. The choice of a coherent group of disciplines, rather than a broad cov-
erage of Hochschild theory, allowed for effective communication between different
groups of practitioners.

Survey lectures on Hochschild cohomology of algebraic varieties, the relationship
between loop homology and Hochschild cohomology in algebraic topology, and on
the Hochschild cohomology of block algebras of finite groups were complemented
by presentations on higher order structures on Hochschild cohomology such as
existence of a Batalin–Vilkovisky operator or the explicit form of the Gerstenhaber
Lie bracket in special cases. Further, categorical interpretations of various aspects
of Hochschild theory were presented, and variations of Hochschild cohomology
such as Koszul or Poisson cohomology were studied.

Numerous discussions among the participants, in particular among participants
belonging to different mathematical communities, have contributed to the work-
shop in an essential way. As always, such workshop at MFO provided an ideal
atmosphere for fruitful interaction and exchange of ideas. It is a pleasure to thank
the administration and the staff of the Oberwolfach Institute for their efficient
support and hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Degeneration in triangulated categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Sarah Witherspoon (joint with Lauren Grimley, Van C. Nguyen, Cris
Negron)
An Alternate Approach to the Lie Bracket on Hochschild Cohomology . . 473

Cris Negron (joint with Sarah Witherspoon)
The Gerstenhaber bracket as a Schouten bracket for polynomial rings
extended by finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Andrea Solotar (joint with Roland Berger, Thierry Lambre)
Koszul Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Yuri Volkov
Hochschild cohomology of a smash product with a cyclic group . . . . . . . . . 481

Zhengfang Wang
Singular Hochschild cohomology and Gerstenhaber algebra structure . . . . 484



452 Oberwolfach Report 10/2016

Guodong Zhou
Batalin-Vilkovisky structures in Hochschild cohomology and Poisson
cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Yang Han
Proper smooth local DG algebras are trivial . . . . . . . . . . . . . . . . . . . . . . . . . 490

Petter Andreas Bergh (joint with Magnus Hellstrøm-Finnsen)
Hochschild cohomology of ring objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Reiner Hermann (joint with Johan Steen)
The Lie bracket in Hochschild cohomology via the homotopy category of
projective bimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
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Abstracts

Hochschild cohomology of smooth algebraic varieties

Damien Calaque

(joint work with Carlo A. Rossi & Michel Van den Bergh)

Let X be a smooth algebraic variety (over a field of zero characteristic). We define
its Hochschild cohomology ring to be

HH ·(X) := Ext·X×X(∆∗OX ,∆∗OX) ,

where ∆ : X → X ×X is the diagonal map.

1. Hochschild cohomology as the (hyper)cohomology of
poly-differential operators

1.1. Local Hochschild cochains. We have the following sequence of ring iso-
morphisms:

Ext·X×X(∆∗OX ,∆∗OX) ∼= RΓ
(

X ×X,RHomOX×X
(∆∗OX ,∆∗OX)

)

∼= RΓ
(

X,RHom(π1)∗OX×X
(OX ,OX)

)

∼= RΓ
(

X,RHom(π1)∗OX̂×X
(OX ,OX)

)

,

where π1 is the first projection and X̂ ×X is the formal neighborhood of the
diagonal in X ×X . The last identification comes from the fact that (π1)∗OX̂×X

is flat over (π1)∗OX×X .
Below we provide an explicit description of the algebra

RHom(π1)∗OX̂×X
(OX ,OX)

)

of local Hochschild cochains, as an algebra object in D(OX−mod).

1.2. Local Hochschild cochains as Lie algebroid Hochschild cochains. Let
L be a Lie algebroid over X which is locally free of finite rank as an OX -module.
As an example to keep in mind, one can consider the tangent Lie algebroid L = TX .
There are several algebraic objects one can associate to L, such as:

• its universal enveloping algebra U(L), which is a filtered Hopf algebroid.
Whenever L = TX , U(L) is the algebra of differential operators on X .

• its jet algebra J(L), defined as the OX -linear dual to U(L), and that one
can view as the algebra on the formal groupoid integrating L.
Whenever L = TX , J(L) is isomorphic to (π1)∗OX̂×X

.

Sketch of proof of this fact. The isomorphism sends a section f of
(π1)∗OX̂×X

to the jet jf defined as follows: jf sends a differential op-

erator P to (id ⊗ P )(f), which is a section of OX because P has finite
order. �

• its Hochschild cohomology ring HH ·
L := ExtJ(L)(OX ,OX).
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The upshot is that we can describe the algebra of local Hochschild cochains as

RHomJ(L)(OX ,OX) ,

with L = TX .

1.3. An explicit description of Lie algebroid Hochschild cochains. Bor-
rowing the notation from above, we have the following:

Proposition 1.1 ([2]). There is an isomorphism of algebras

RHomJ(L)(OX ,OX) ∼= (Dpoly,·
L,X )op

in D(OX−mod). Here Dpoly,n
L,X := U(L)⊗OX

n, the product is the concatenation, and

the differential is the Cartier (a-k-a co-Hochschild) differential for the coalgebra
U(L).

Whenever L = TX , Dpoly,n
L,X (U) is the subcomplex of the Hochschild complex of

OX(U) consisting of these cochains that are differential operators in each argu-
ment.

Sketch of proof of the Proposition. Note that J(L) is a topological algebra, and
that the morphism

RHomcont.
J(L) (OX ,OX) → RHomJ(L)(OX ,OX)

is an isomorphism in D(OX−mod). Let us now give an explicit resolution B·J(L)
of OX as a topological J(L)-module:

BnJ(L) = J(L)⊗̂(n+1)

and the differential sends j0 ⊗ · · · ⊗ jn to

j0j1 ⊗ · · · ⊗ jn + · · ·+ (−1)nj0 ⊗ · · · ⊗ jn−1jn + (−1)n+1j0 ⊗ · · · ⊗ jn−1jn(1) .

We conclude by noting there is a (right) action of Dpoly,·
L,X on B·J(L). �

2. Hochschild cohomology as the cohomology of poly-vector fields

2.1. The Hochschild–Kostant–Rosenberg (HKR) theorem. Let L be a Lie
algebroid as above. The skew-symmetrization map

∧·
OX

L −→ Dpoly,·
L,X

u1 ∧ · · · ∧ um 7−→
1

m!

∑

σ∈Sm

εσuσ(1) ⊗ · · · ⊗ uσ(m)

is a quasi-isomorphism of sheaves, known as the Hochschild–Kostant–Rosenberg
(or, HKR) morphism. It induces in particular an isomorphism of graded vector
spaces

HKR : H ·(X,∧·L) −̃→HH ·
L(X) .
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2.2. A multiplicative version of the HKR morphism. Consider the short
exact sequence

0 → L → U(L)≤2
+ → S2

OX
L → 0 ,

where U(L)+ denotes the augmentation ideal of U(L), i.e. L-differential operators
vanishing on constants. This extension defines the Atiyah class of L:

AtL ∈ Ext1X
(

S2(TX), TX

)

→ Ext1X
(

T⊗2
X , TX

)

∼=

Ext1X
(

TX , End(TX)
)

∼= H1
(

X,Ω1
X ⊗ End(TX)

)

.

We derive from it the Todd genus of L:

TdL := det

√

AtL
1− exp(−AtL)

∈ ⊕kH
k(X,Ωk

X) .

It is given by a formal expression involving sums of products of ck = tr(AtkL)’s.

Theorem 2.1 ([1]). Composing the HKR morphism together with the contraction
against the Todd genus leads to a ring isomorphism

HKR ◦ (TdLx−) : H ·(X,∧·L) −̃→HH ·
L(X) .

2.3. Sanity check: the original HKR morphism is not multiplicative. Let
us show that when X is a K3 surface and L = TX the HKR morphism is not a ring
isomorphism in cohomology. Using Theorem 2.1 above this is equivalent to show
that the contraction TdTX

x− against the Todd genus is not a ring isomorphism.
Note that, for degree reasons, in the case of a K3 surface the Todd genus takes
the form exp(ac1 + bc2), with a and b non-zero. Since the contraction c1x− with
c1 is known to be a derivation, we are left to show that the contraction with c2 is
not a derivation.

Sketch of proof that c2x− is not a derivation. Let ω be the symplectic form on X
and Π be the corresponding Poisson bivector. Observe that c2 is proportional to
[ω ∧ ω̄] ∈ H2(X,Ω2

X).
One the one hand, we have that c2x(Π∧Π) = 0 (Π∧Π = 0 because of dimension).

On the other hand, (c2xΠ) ∧ Π = Π ∧ (c2xΠ) is proportional to [ω̄ ∧ Π], which is
non-zero in H2(X,∧2TX). Hence c2x− is not a derivation. �
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Hochschild cohomology of projective hypersurfaces

Liyu Liu

Hochschild cohomology originated as a cohomology theory for associative algebras,
which is known to be closely related to deformation theory since the work of
Gerstenhaber. Meanwhile, both the cohomology and the deformation side of the
picture have been developed for a variety of mathematical objects, ranging from
schemes to abelian and differential graded categories. We compute Hochschild
cohomology of projective hypersurfaces X ⊂ Pn starting from the Gerstenhaber-
Schack complex of the (restricted) structure sheaf. We construct a complex in
terms of Čech cochains as well as an explicit quasi-isomorphism from it to the
Gerstenhaber-Schack complex. The cohomology of the former is computed, and
then the corresponding Gerstenhaber-Schack cocycles are derived.

We are particularly interested in the second cohomology group and its relation
with deformations. We show that the group admits a decomposition

HH2(X) ∼= H0(X,∧2TX)⊕H1(X, TX)⊕H2(X,OX)⊕ E

which is similar to the classical HKR decomposition. It is proven that a projective
hypersurface is smooth if and only if the classical HKR decomposition holds for
this group (i.e. E = 0), if and only if the classical HKR decomposition holds for
all cohomology groups, namely,

HHi(X) ∼=
⊕

p+q=i

Hp(X,∧qTX)

for all i ≥ 0. In most cases (for example, n ≥ 3), a 2-class in E deforms local
multiplications. In some rare cases, however, it deforms both local multiplications
and restriction maps simultaneously; such a class is said to be intertwined. We
catch an explicit family of intertwined 2-classes for plane singularities determined
by homogeneous polynomials of degree ≥ 6, and prove the nonexistence in the
case degree ≤ 4. The situation for degree five is still open.

Furthermore, we make our computations precise in the case of quartic surfaces,
and obtain the lower bound of the dimensions of the second cohomology groups.
Not only smooth quartic surfaces, but also some non-smooth ones, can reach the
lower bound. An example of such non-smooth surfaces is a Kummer surface.

Witt vectors as a polynomial functor

Dmitry Kaledin

Recall that to any commutative ring A, one canonically associates the ring W (A)
of p-typical Witt vectors of A. Witt vectors are functorial in A, and W (A) is the
inverse limit of rings Wm(A) of m-truncated p-typical Witt vectors numbered by
integers m ≥ 1. We have W1(A) ∼= A, and for any m, Wm+1(A) is an extension of
Wm(A) by A itself.

If A is annihilated by a prime p and perfect — that is, the Frobenius endo-
morphism F : A → A is bijective — then one has Wm(A) ∼= W (A)/pm, and in
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particular, A ∼= W (A)/p. If A is not perfect, this is not true. However, if A is
sufficiently nice — for example, if it is the algebra of functions on a smooth affine
algebraic variety — then W (A) has no p-torsion. Thus roughly speaking, the Witt
vectors construction provides a functorial way to associate a ring of characteristic
0 to a ring of characteristic p.

Historically, this motivated a lot of interest in the construction. In particular,
one of the earliest attempts to construct a Weil cohomology theory, due to J.-P.
Serre, was to considerH∗(X,W (OX)), whereX is an algebraic variety over a finite
field k of positive characteristic p, and W (OX) is the sheaf obtained by taking the
Witt vectors of its structure sheaf OX .

This attempt did not quite work, and the focus of attention switched to other
cohomology theories discovered by A. Grothendieck: étale cohomology first of all,
but also cristalline cohomology introduced slightly later. Much later, P. Deligne
and L. Illusie discovered what could be thought of as a vindication of Serre’s
original approach. They proved that any smooth algebraic varietyX over a perfect
field k of positive characteristic can be equipped with a functorial de Rham-Witt
complex WΩ∗

X , an extension of the usual de Rham complex Ω∗
X . In degree 0, one

has WΩ0
X

∼= W (OX), but in higher degrees, one needs a new construction. The
resulting complex computes cristalline cohomology H∗

cris(X) of X , in the sense
that one has a canonical isomorphism H∗

cris(X) ∼= H∗(X,WΩ∗
X), and cristalline

cohomology is known to be a Weil cohomology theory.
Yet another breakthrough in our understanding of Witt vectors happenned in

1995, and it was due to L. Hesselholt. What he did, based on ideas from algebraic
topology, was to construct Witt vectors W (A) for an arbitrary associative ring A.
Hesselholt’s W (A) is also the inverse limit of its truncated version Wm(A), and
if A is commutative and unital, then it coincides with the classical Witt vectors
ring. But if A is not commutative, W (A) is not even a ring — it is only an abelian
group. We have W1(A) = A/[A,A], the quotient of the algebra A by the subgroup
spanned by commutators of its elements, and for any m, Wm+1(A) is an extension
of Wm(A) by A/[A,A].

In the context of non-commutative algebra and non-commutative algebraic
geometry, one common theme of the two constructions is immediately obvious:
Hochschild homology. On one hand, for any associative ring, A/[A,A] is the 0-th
Hochschild homology group HH0(A). On the other hand, for a smooth affine al-
gebraic variety X = SpecA, the spaces H0(X,Ωi

X) of differential forms on X are
identified with the Hochschild homology groups HHi(A) by the famous theorem
of Hochschild, Kostant and Rosenberg. Thus one is lead to expect that a unify-
ing theory would use an associative unital k-algebra A as an input, and produce
what one could call “Hochschild-Witt homology groups” WHH∗(A) such that in
degree 0, WHH0(A) coincides with Hesselholt’s Witt vectors, while for a commu-
tative A with smooth spectrum X = SpecA, we would have natural identifications
WHHi(A) ∼= H0(X,WΩi

X).
However, Hochschild homology is in fact a theory with two variables – an alge-

bra A and an A-bimodule M (that is, a module over the product Ao⊗A of A with
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its opposite algebra Ao). To obtain HH∗(A), one takes as M the diagonal bimod-
ule A, but the groups HH∗(A,M) are well-defined for any bimodule. Moreover,
Hochschld homology has the following trace-like property: for any two algebras
A, B, a left module M over Ao ⊗B, and a left module N over Bo ⊗A, we have a
canonical isomorphism

HH∗(A,M ⊗B N) ∼= HH∗(B,N ⊗A M),

subject to some natural compatibility conditions. It can be axiomatized under the
name of “trace theory” and “trace functor”, and one can prove the following: if
one wants to have a generalization of Hochschild homology that is a functor of two
variables A, M and has trace isomorphisms, then it suffices to define it for A = k.
Thus one can trade the first variable for the second one: instead of constructing
WHH∗(A) for an arbitrary A, one can construct WHH∗(k,M) for an arbitrary k-
vector space M . This is hopefully simpler. In particular, it is reasonable to expect
that WHHi(k,M) = 0 for i ≥ 1, so that the problem reduces to constructing a
single functor from k-vector spaces to abelian groups.

In this talk, we present a very simple and direct construction of such a functor
motivated by recent work of V. Vologodsky. In a nutshell, the basic idea is this:
instead of trying to associate an abelian group to a k-vector space M directly, one
should lift M to a free W (k)-module in some way, use it for the construction, and
then prove that the result does not depend on the lifting. The resulting definition
only works over a perfect field k of characteristic p and assumes that we already
know the classical Witt vectors ring W (k). However, it produces directly an
inverse system of p-typical Witt vectors functors Wm, and it only uses elementary
properties of cyclic groups Z/pnZ, n ≥ 0. The functors Wm are polynomial, thus
the “polynomial functor” of the title.

On the Hochschild cohomology of finite group algebras

Markus Linckelmann

Let O be a complete local commutative principal ideal domain with residue field
k of prime characteristic p. Let G be a finite group. A block of OG is an indecom-
posable direct factor B of the group algebra OG. Then B = OG · b for a primitive
idempotent b in Z(OG); this correspondence is a bijection between the blocks of
OG and the primitive idempotents in Z(OG). Note that a block B of OG is also
an indecomposable direct summand of OG as an OG-OG-bimodule. Which alge-
bras arise as block algebras of finite groups? It is expected that only ‘few’ algebra
do arise in this way, and the finiteness conjectures in block theory formalise this
intuition to some extent. In order to describe one of these conjectures, we will
need the notion of a defect group of a block, a concept which goes back to Brauer.

Definition 1. Let B be a block of OG. A defect group of B is a maximal p-
subgroup P of G such that OP is isomorphic to a direct summand of B as an
OP -OP -bimodule.
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The defect groups of a block form a conjugacy class of p-subgroups, and there
is at least one block whose defect groups are the Sylow p-subgroups of G. The
blueprint for finiteness conjectures in block theory is that for a fixed finite p-
group there should be only finitely many classes of blocks with a given structural
property. Here is a classical example.

Conjecture 2 (Donovan’s conjecture, 1970s). For any fixed finite p-group P ,
there are only finitely many Morita equivalence classes of block algebras of finite
groups with defect groups isomorphic to P .

Originally, this conjecture was formulated for blocks over an algebraically closed
field k. The formulation over O makes just as much sense, although it seems un-
known at present, whether the algebra structure of a block B of OG is determined
by that of the corresponding block k ⊗O B of kG.

Donovan’s conjecture is known to hold in a number of cases, including P cyclic
(Janusz, Kupisch, 1970s), most cases of 2-groups of tame representation type
(Erdmann, 1980s), and for all elementary abelian 2-groups (by recent work of
Eaton, Kessar, Külshammer, and Sambale, using the classification of finite simple
groups). It is possible to reformulate Donovan’s conjecture without reference to
defect groups, using the following notion.

Definition 3 ([5, 3.1]). Two O-algebras A and B are called separably equivalent
if there exist an A-B-bimodule M and a B-A-bimodule N , both finitely generated
projective as left and right modules, such that A is isomorphic to a direct summand
of M ⊗B N as an A-A-bimodule, and B is isomorphic to a direct summand of
N ⊗A M as a B-B-bimodule.

A block algebra B of OG and any of its defect group algebras OP are separably
equivalent, via the bimodules BOP and OPB, obtained from restricting the B-
B-bimodule B to OP on one side. Further examples of separable equivalences
between O-algebras include Morita equivalences, stable equivalences of Morita
type (Broué, 1990s) and singular equivalences of Morita type (Chen-Sun, 2012).
In order to reformulate Dononvan’s conjecture without referring to defect groups,
we need the following observation.

Proposition 4. Let P and Q be finite p-groups. Suppose that O has characteristic
zero and that OP and OQ are separably equivalent. Then the following hold.

(i) |P | = |Q|.

(ii) rk(P ) = rk(Q).

Corollary 5. Donovan’s conjecture (over O having characteristic zero, with k al-
gebraically closed) is equivalent to the following conjecture: every separable equiva-
lence class of block algebras of finite groups consists of finitely many Morita equiv-
alence classes.

Question 6. Which algebras (other than block algebras) have the property that
their separable equivalence class consists of finitely many Morita equivalence
classes?
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Following the terminology introduced in [3], we say that a finite-dimensional k-
algebra A satisfies the condition (Fg) if HH∗(A) is Noetherian and Ext∗A(U,U) is
finitely generated as a module over HH∗(A), for any finitely generated A-module
U . As a consequence of a theorem of Evens and Venkov, finite group algebras
satisfy the condition (Fg).

An O-algebra A is called symmetric if A is finitely generated as an O-module
and if A is isomorphic, as an A-A-bimodule, to its O-dual A∨ = HomO(A,O).
Examples of symmetric O-algebras include finite group algebras, Iwahori-Hecke
algebras of finite Coxeter groups, and Hopf algebras with an antipode of order 2.

Theorem 7 ([5, 4.1]). Let A and B be separably equivalent symmetric k-algebras.
Then A satisfies (Fg) if and only if B satisfies (Fg). Moreover, in that case,
HH∗(A) and HH∗(B) have the same Krull dimension.

Theorem 8 ([5, 1.1]). Let H = Hq(W,S) be an Iwahori-Hecke algebra over C of
a finite Coxeter group (W,S), with parameter q ∈ C× of finite order. Suppose that
all irreducible components of W are of classical type A, B, or D, and that if W
involves a component of type B or D, then q has odd order. Then H satisfies the
condition (Fg).

It is not known in general, whether Iwahori-Hecke algebras of finite Coxeter
groups over fields of positive characteristic satify the condition (Fg). Donovan’s
conjecture would in particular imply that there are only finitely many Hochschild
cohomology algebras, up to isomorphism, of blocks with a fixed defect group.
While in this generality still unknown, this can be shown to become true upon
passing to Hilbert series.

Theorem 9 ([4, Theorem 2]). Let P be a finite p-group. There are only finitely
many power series in Z[[t]] which are equal to

∑

n≥0 dimk(HHn(B)) · tn, with B
running over the blocks of finite group algebras over k with defect groups isomorphic
to P .

The proof uses a result of Symonds, previously conjectured by Benson, stating
that the Castelnuovo-Mumford regularity of finite group cohomology is zero.

Separable equivalences preserve further the representation type as well as the
dimensions of stable and derived module categories as triangulated categories;
see [5]. Separable equivalences preserve in some cases the finitisic dimension of
endomorphism algebras of modules; this has been used in [6] to determine the
finitisic dimension of the category of cohomological Mackey functors of a block,
extending work of Tambara.

Question 10. Do separable equivalences between symmetric k-algebras preserve
in general the Castelnuovo-Mumford regularity of Hochschild cohomology?

We assume now that O has characteristic zero, and we denote by K the field
of factions of O.
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Definition 11. Let A be a symmetric O-algebra and U an A-lattice (that is, U is
a finitely generated A-module which is free as an O-module). For α ∈ EndO(U),
denote by trU (α) the trace of α on U .

(a) U is called a Knörr lattice, or U is said to have the property (K), if for any
α ∈ EndA(U), we have trU (α) · O ⊆ rk(U) · O, with equality if and only if α is an
automorphism of U .

(b) U is said to have the stable exponent property or, for short, the property (E),
if the socle of the EndA(U) as a module over itself is equal to λIdU · O for some
λ ∈ O.

Theorem 12 (Carlson-Jones [1]). Let G be a finite group and U an indecomposable
non-projective OG-lattice. Then U has property (K) if and only if U has property
(E).

An intriguing aspect of this theorem is that property (E) is invariant under
stable equivalences, but property (K) is not even invariant under Morita equiv-
alences. And yet, these two properties are equivalent for finite group algebras.
Thus a finite group algebra OG must have a property which singles it out within
its Morita equivalence class.

What follows is based on joint work with F. Eisele, M. Geline, and R. Kessar
[2], where we identify such a property in terms of Tate duality. For A a symmetric
O-algebra and any two A-lattices U , V , Tate duality is a natural pairing

HomA(U, V )×HomA(V, U) → K/O

In the case of finite group algebras, it is possible to be more precise: one can replace
K/O, which is the colimit of all torsion O-modules of the form O/J(O)n, by the
module O/|G|O, and the duality sends (α, β) ∈ HomA(U, V )×HomA(V, U) to the
image in O/|G|O of trU (β◦α), where α, β are representatives of α, β, respectively.
This is a key ingredient in the proof of the above theorem of Carlson and Jones,
since this is where stable endomorphisms and traces are being connected. It turns
out that the property of OG which yields this description of Tate duality can
be identified as follows. Let A be a symmetric O-algebra; choose a bimodule
isomorphism A ∼= A∨. Dualising the multiplication map µ : A ⊗O A → A yields
a bimodule homomorphism A∨ → (A ⊗O A)∨. Using the isomorphism A ∼= A∨,
this yields a bimodule homomorphism τ : A → A⊗O A. Then µ ◦ τ is a bimodule
endomorphism of A, hence sends 1A to an element zA ∈ Z(A). We call zA the
relative projective element of A; this is also called the central Casimir element in
A. The element zA depends on the choice of the bimodule isomorphism A ∼= A∨;
that is, zA is unique up to multiplication by elements in Z(A)×.

Definition 13. A symmetric O-algebra A is said to have the projective scalar
property, if there is a choice of a bimodule isomorphism A ∼= A∨ such that zA =
λ · 1A for some λ ∈ O.

Remarks 14.

(a) Finite group algebras, block algebras, their source algebras, and matrix algebras
have the projective scalar property.
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(b) The projective scalar property is not invariant under Morita equivalences in
general.

(c) There are examples of Morita equivalence classes of symmetric O-algebras
having no representative satisfying the projective scalar property, so this property
can be used in principle to rule out certain Morita equivalence classes of O-algebras
as coming from block algebras.

(d) Iwahori-Hecke algebras may or may not have the projective scalar property;
this depends on the underlying parameter q.

(e) Hopf algebras with an antipode of order 2 have the projective scalar property.

Theorem 15 ([2]). Let A be a symmetric O-algebra such that for some bimodule
isomorphism A ∼= A∨ we have zA = λ ·1A, for some λ ∈ O. Suppose that K⊗OA
is split semisimple. Then Tate duality takes the form

HomA(U, V )×HomA(V, U) → O/λO

mapping a pair (α, β) ∈ HomA(U, V ) × HomA(V, U) to the image in O/λO of
trU (β ◦ α).

And whenever Tate duality takes this form, the proof of the above theorem of
Carlson and Jones can be adapted to showing the following result.

Theorem 16 ([2]). Let A be a symmetric O-algebra which has the projective
scalar property. Suppose that K ⊗O A is split semisimple. An indecomposable
non-projective A-lattice U has the property (K) if and only if it has the property
(E).
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Towards coherent duality over derived formal schemes

Liran Shaul

Given a finite type map f : X → Y between noetherian schemes, coherent duality
theory focuses on a pseudofunctor f ! : D+

c (Y ) → D+
c (X), which, when f is proper,

is right adjoint to the derived pushforward pseudofunctor Rf∗. One important
property of f ! is its base change property: given a quasi-compact quasi-separated
morphism of schemes f : X → S, and given any morphism g : Y → S, let
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X ′ := X ×S Y , with projections f ′ : X ′ → Y and h : X ′ → X ; if X and Y are
tor-independent over S, then there is an isomorphism of functors Rf ′

∗Lh
∗(−) ∼=

Lg∗Rf∗(−). If one wishes to understand how (−)! behaves with respect to more
general base changes, one needs to replace the fiber product with its (non-linear)
derived functor X ×R

S Y , which is in general no longer an ordinary scheme, but a
derived scheme.

In this talk, which is based on [5], we explain how to construct (−)! over a
suitable category of affine derived schemes, and show that this extended (−)! com-
mutes with base change with respect to maps which are of finite flat dimension.
Our construction is based on the notion of a rigid dualizing complex. Rigid dual-
izing complexes, first introduced by Van den Bergh in [6], are dualizing complexes
that carry an extra structure, making them unique up to a unique isomorphism.

Recall that if A is a noetherian derived ring, by [2, 3, 8], a complex R ∈ Db
f (A)

is called a dualizing complex if it has finite injective dimension over A, and the
natural map A → RHomA(R,R) is an isomorphism in D(A). Given a base ring
K, and a derived algebra A over K, a rigid dualizing complex over A relative to
K is a dualizing complex over A, of finite flat dimension over K, and a specified
isomorphism

ρ : R → RHomA⊗L
K
A(A,R ⊗L

K R).

The right hand side, a variant of derived Hochschild cohomology, is well defined
by [7, Theorem 0.3.4] (or, if A is a ring, by [1, Theorem 3.2]).

Given a noetherian ringK, we denote by DGRef.fd/K the category of noetherian

derived rings A over K, such that H0(A) is essentially of finite type over K, and
such that A has finite flat dimension over K. Our first main result concerns
existence and uniqueness of rigid dualizing complexes in this category:

Theorem 1. Let K be a Gorenstein noetherian ring of finite Krull dimension.
For any A ∈ DGRef.fd/K , there exists a rigid dualizing complex RA over A relative
to K, and moreover, it is unique up to isomorphism in D(A).

Next, we discuss functoriality. A map f : A → B between noetherian derived
rings is called cohomologically finite if the induced map H0(f) : H0(A) → H0(B)
is a finite ring map.

Theorem 2. Let K be a Gorenstein noetherian ring of finite Krull dimension, and
let f : A → B be a cohomologically finite map in DGRef.fd/K . If RA is the rigid
dualizing complex over A relative to K, then RHomA(B,RA) has the structure of
a rigid dualizing complex over B relative to K.

A map f : A → B between noetherian derived rings is called cohomologi-
cally essentially smooth if B has flat dimension 0 over A, and the induced map
H0(f) : H0(A) → H0(B) is essentially smooth (i.e, it is essentially of finite type
and formally smooth). In this case, Ω1

H0(B)/H0(A) is locally free, and

ωH0(B)/H0(A) := (H0(f))!(H0(A))

is a tilting complex over H0(B) (locally, on each connected component of
Spec(H0(B)), it is given by Ωn

H0(B)/H0(A)[n]). It follows that there is a unique
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ωB/A ∈ D(B) such that

ωB/A ⊗L
B H0(B) ∼= ωH0(B)/H0(A)

Theorem 3. Let K be a Gorenstein noetherian ring of finite Krull dimension,
and let f : A → B be a cohomologically essentially smooth map in DGRef.fd/K .

If RA is the rigid dualizing complex over A relative to K, then RA ⊗L
A ωB/A has

the structure of a rigid dualizing complex over B relative to K.

Using these results, we obtain a (−)! theory over DGRef.fd/K .

Theorem 4. Let K be a Gorenstein noetherian ring of finite Krull dimension.
There exists a pseudofunctor

(−)! : DGRef.fd/K → Cat

with the following properties:

(1) On the full subcategory of DGRef.fd/K made of essentially finite type K-

algebras which are of finite flat dimension over K, (−)! is naturally iso-
morphic to the classical twisted inverse image pseudofunctor.

(2) Given a cohomologically finite map f : A → B in DGRef.fd/K , there is an
isomorphism

f !(M) ∼= RHomA(B,M)

of functors D+
f (A) → D+

f (B).
(3) Given a cohomologically essentially smooth map f : A → B in DGRef.fd/K ,

there is an isomorphism

f !(M) ∼= M ⊗L
A ωB/A

of functors D+
f (A) → D+

f (B).

Returning to our original motivation, and, by taking K-flat resolutions, we
obtain the following non-flat base change result:

Theorem 5. Let K be a Gorenstein noetherian ring of finite Krull dimension, let
f : A → B be an arbitrary map in DGRef.fd/K , and let g : A → C be a K-flat
map in DGRef.fd/K such that C has finite flat dimension over A. Consider the
induced base change commutative diagram

A
f

//

g

��

B

h

��

C
f ′

// B ⊗A C

Then there is an isomorphism

Lh∗ ◦ f !(−) ∼= (f ′)! ◦ Lg∗(−)

of functors

D+
f (A) → D+

f (B ⊗A C).
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This, based on [5], concludes the development of an affine derived theory of
(−)!. Going further, we would like to obtain a similar theory for affine derived
formal schemes. As the above theory is based on derived Hochschild cohomology, it
becomes necessary to make a detailed study of the derived Hochschild cohomology
of derived adic rings. A first step in this direction was done in our [4], where we
explored relations between derived completion and derived Hochschild cohomology.
To go further, one must improve the understanding of the derived torsion and
derived completion functors over commutative derived rings.
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Loop homology and Hochschild cohomology

Don Stanley

Let M be a closed simply connected manifold of dimension n. The cochain functor
with some field coefficients is denoted by C∗( ). The free loops space on M is
denoted by LM . The loop homology H∗(LM) is defined to be a shift of the
normal homology, H∗(LM) = H∗+n(LM).

The main focus of the talk is to look at the isomorphism

HH∗(C∗(M), C∗(M)) ∼= H∗(LM)

We look at this isomorphism with four levels of structure.
1) Linear
2) As algebras
3) As Gerstenhaber algebras
4) As BV algebras.
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We consider the first three structures on the Hochschild cohomology to be well
known, but say a bit about the fourth structure. For the loop homology we describe
the algebra, Gerstenhaber and BV algebra structures.

Given a base point ∗ in a topological space X , there is the familar (based)
loops base ΩX . This is the set of base point preserving maps, from the circle
S1 (considered as the complex numbers of length 1) into X . These maps can be
considered as paths beginning and ending at the base point. This is topologized
with the compact open topology.

ΩX = {φ : S1 → X |φ(1) = ∗}

As the paths begin and end at the base point, we can compose them to get a
multiplication on ΩX . In turn this makes H∗(ΩX) into an associative algebra.

The free loop space on X , LX consists of all maps from S1 to X , again with
the compact open topology.

LX = {φ : S1 → X}

Even though we can only compose loops that have the same base point, when
X = M , Chas and Sullivan constructed a so called loop product on H∗(LM), by
mixing the intersection product on H∗(M) and the product on ΩM mentioned
above.

Consider the fibration

ΩM → LM
ev1→ M

where ev1 is evaluation at the base point of S1. Two free loops in LM can be
composed if they evaluate to the same point in M . So if α ∈ Cl(LM) and β ∈
Ck(LM) intersect nicely we can get a chain α ◦ β ∈ Cl+k−n(LM), by only taking
the points in the simplices where the evaluations of the chains are the same. This
induces a graded algebra structure on H∗(LM).

It turns out that this algebra structure is commutative and the homotopy mak-
ing it commute gives rise to a Lie algebra structure (of degree 1) on H∗(LM) and
turns H∗(LM) into a Gerstenhaber algebra.

Chas and Sullivan also describe an operator B : H∗(LM) → H∗+1(LM) which
is simply induced by the circle action S1×LM → LM . You just take the image of
multiplication by the fundamental class of the circle. This operator turns H∗(LM)
into a BV algebra which induces the Gerstenhaber algebra structure.

On the HH∗(C∗(M), C∗(M)) side the BV structure comes from Connes cyl-
cic operator on HH∗ together with the duality equivalence C∗(M) → C∗(M).
The structure required of the equivalence is somewhat complicated in general but
simplifies over the rationals when it can be replaced by an isomorphism.

With general coefficients the isomorphism HH∗(C∗(M), C∗(M)) ∼= H∗(LM)
linearly and as algebras has been proven by many authors. As Gerstenhaber and
BV algebras it has been proven over the rationals, however over the integers or
finite characteristic fields it has been shown that the two sides are not in general
isomorphic as BV algebras.



Hochschild Cohomology in Algebra, Geometry, and Topology 467

Tensor products with Carlson’s Lζ-modules

Srikanth B. Iyengar

(joint work with Jon F. Carlson)

Let k be a field and A a k-algebra. In what follows ⊗ denotes tensor products over
k, that is to say, ⊗k. We say that a map ∆: A → A⊗A is a coproduct on A if the
k-algebra A can be endowed with a structure of a Hopf algebra with diagonal ∆.
It can happen that A has different coproducts.

Example 1. Let k be a field of positive characteristic p and set

A := k[x1, . . . , xc]/(x
p
1, . . . , x

p
c) ,

an algebra of truncated polynomials.
One can view A as the group algebra of the elementary abelian p-group (Z/pZ)c

with generators {xi + 1}ci=1. Then A has the coproduct defined by

∆Gr(xi) := xi ⊗ 1 + xi ⊗ xi + 1⊗ xi .

One can also view A as the restricted enveloping algebra of the abelian Lie
algebra with basis {xi}

c
i=1. Then A has the coproduct defined by

∆Lie(xi) := xi ⊗ 1 + 1⊗ xi .

These will be the running examples in this text.

Let ∆ be a coproduct on A and let M,N be (left) A-modules. Then M ⊗N is
an A ⊗ A-module; we write ∆∗(M ⊗ N) for A-module obtained by restriction of
scalars along ∆. Thus, for any α in A and m⊗ n in M ⊗N , one has

α(m⊗ n) :=
∑

(α)

α1m⊗ α2n where ∆(α) =
∑

(α)

α1 ⊗ α2.

The question that informs this work is this: How does this A-module depend on ∆?
Certainly, as ∆ changes, one can get non-isomorphic A-modules; see Example 4.
On the other hand, for any ∆ one has

∆∗(M ⊗ k) ∼= M and ∆∗(M ⊗A) ∼= Ar where r = rankkM .

Carlson modules. Fix a class ζ in ExtdA(k, k). This is represented by a homo-
morphism Ωdk → k, where Ωdk denotes a d-th syzygy module of k. We can assume
that this map is surjective; its kernel is the module that is usually denoted Lζ:

(1) 0 −→ Lζ −→ Ωdk −→ k −→ 0 .

This module was introduced by Carlson [1, pp. 293], in the context of group
algebras, and plays an important role in the theory of support varieties. We are
interested in the modules ∆∗(Lζ ⊗M), where ∆ is a coproduct on A.

Example 2. Let A be the k-algebra introduced in Example 1. Then there are
isomorphisms of k-algebras

ExtA(k, k) ∼=

{

k[η1, . . . , ηc] when p = 2

Λk(η1, . . . , ηc)⊗ k[ζ1, . . . , ζc] when p ≥ 3
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Here each ηi has degree one and ζi has degree 2; this computation can be found
in, for example, [3, Corollary 3.5.7]. We are interested in the following subalgebra.

S :=

{

k[η21 , . . . , η
2
c ] when p = 2

k[ζ1, . . . , ζc] when p ≥ 3

The result below on the coproducts introduced in Example 1 is from [2].

Theorem 3. With notation as above, if ζ is in S, then the A-modules ∆∗
Gr(Lζ⊗M)

and ∆∗
Lie(Lζ ⊗N) are isomorphic for any finitely generated A-module M .

Such an isomorphism need not hold if ζ is not in S.

Example 4. Let k be a field of characteristic 2 and set A = k[x1, x2]/(x
2
1, x

2
2).

With notation as in Example 2, set ζ = η1 + cη2, where c ∈ k \ {0, 1}. Then
∆∗

Gr(Lζ ⊗ Lζ) is indecomposable, whereas ∆∗
Lie(Lζ ⊗ Lζ) decomposes as Lζ ⊕ Lζ .

We now outline a proof of Theorem 3. For a start the exact sequence (1) induces
an exact sequence of A-modules

0 −→ ∆∗(Lζ ⊗M) −→ ∆∗(Ωdk ⊗M) −→ ∆∗(k ⊗M) −→ 0 .

Note that ∆∗(Ωdk ⊗ M) is a d-th syzygy module of M ; this identification does
depend on ∆. One thus gets an exact sequence of A-modules

0 −→ ∆∗(Lζ ⊗M) −→ Ωdk
∆∗(ζ⊗M)
−−−−−−→ k −→ 0

where ∆∗(ζ ⊗M) denotes the image of ζ under the map of k-algebras

(−)⊗M : Ext∗A(k, k) −→ Ext∗A(M,M) .

The result below, to be used in the proof of the theorem above, is easy to verify.

Lemma 5. Let ∆1 and ∆2 be coproducts on A, and ζ an element in ExtdA(k, k).
If ∆∗

1(ζ ⊗ M) = ∆∗
2(ζ ⊗ M), then up to projective summands, the A-modules

∆∗
1(Lζ ⊗M) and ∆∗

2(Lζ ⊗M) are isomorphic. �

Hochschild cohomology. Fix a coproduct ∆ on A. For any A-module X the
left A-module ∆∗(X ⊗ A) has also a right A-module structure, inherited by the
right action on A. It is thus a module over Ae, the enveloping algebra of A, with

(α⊗ β) · (x ⊗ a) =
∑

(α)

α1x⊗ α2aβ

Write F∆(X) for this Ae-module. This construction has the following properties:

(1) F∆(A) ∼= Ae.
(2) F∆(k) ∼= A, where A has the canonical Ae-module structure.
(3) F∆(X)⊗A M ∼= ∆∗(X ⊗M), as A-modules.

These assertions can be verified using the fact that ∆ is coassociative and that the
antipode is the inverse of the identity under the convolution product. From these
one gets the following result of Pevtsova and Witherspoon [5, Lemma 13].
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Proposition 6. The following diagram of k-algebra is commutative:

Ext∗A(k, k)

E∆

��

(−)⊗M

**❯❯
❯❯❯

❯❯❯
❯

Ext∗A(M,M)

Ext∗Ae(A,A)
(−)⊗AM

44✐✐✐✐✐✐✐✐✐

where E∆ is induced by the functor F∆ : ModA → ModAe described above. �

From this result and Lemma 5 one immediately gets the following.

Corollary 7. Give coproducts ∆1,∆2 on A and an element ζ in ExtdA(k, k), if
E∆1(ζ) = E∆2(ζ), then for any A-module M , the A-modules ∆∗

1(Lζ ⊗ M) and
∆∗

2(Lζ ⊗M) are isomorphic up to projective summands. �

Example 8. Let A be as in Example 1. Then there are isomorphisms of k-algebras

ExtAe(k, k) ∼=

{

A[η1, . . . , ηc] when p = 2

ΛA(η1, . . . , ηc)⊗A A[ζ1, . . . , ζc] when p ≥ 3

Here each ηi has degree one and each ζi has degree 2; this follows from Example
2 and [4, Theorem 2.1]. A direct computation then yields the following:

E∆Gr(ηi) = (1 + xi)ηi and E∆Gr(ζi) = ζi

E∆Lie(ηi) = ηi and E∆Lie(ζi) = ζi

Given these computations the result below is evident.

Corollary 9. E∆Gr = E∆Lie on the subalgebra S in Example 2. �

Combining this with Corollary 7 essentially proves Theorem 3; one only has to
verify that any finite dimensional A-modules M and N of the same rank (over k)
that are isomorphic up to projective summands are in fact isomorphic. This is
because any projective A-module is free.

Theorem 3 has applications to the study of modular representations of ele-
mentary abelian groups; in particular, to constructing modules with prescribed
annihilators in cohomology. The reader is invited to [2] for details.
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Auslander Theorem and Searching for Noncommutative McKay

James Zhang

A famous theorem of Auslander states that, if G is a finite small subgroup of
GLn(C) acting on R := C[x1, · · · , xn] naturally, then there is a natural isomor-
phism of algebras

R ∗G ∼= EndRG(R),

see [A1, A2]. This result plays an important role in the classical McKay corre-
spondence. In order to extend the McKay correspodence to the noncommutative
setting, one needs to establish an Auslander theorem for noncommutative alge-
bras. By replacing “small group” by “homologically small Hopf action” we are
able to prove the following.

Theorem: Let H be a semisimple Hopf algebra acting on a noetherian Artin-
Schelter regular and Cohen-Macaulay algebra R homogeneously. Then the follow-
ing are equivalent.

(1) The H-action on R is homologically small.
(2) There is a natural isomorphism of algebras R#H ∼= EndRH (R).

This talk is based on joint work with Y.-H. Bao and J.-W. He [B1, B2].
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Degeneration in triangulated categories

Alexander Zimmermann

(joint work with Bernt Tore Jensen, Xiuping Su; Manuel Saoŕın)

1. The classical situation

Let k be an algebraically closed field and let A be a finite dimensional k-algebra.
Then an A-module structure on kd is just a k-algebra homomorphism A →
Matd×d(k). Two such maps give isomorphic module structures if and only if
they are conjugate by a matrix in GLd(k). Hence the set of A-module structures
on kd form an algebraic affine variety mod(A, d) on which GLd(k) acts, and orbits
of this action correspond to isomorphism classes. The module M degenerates to
N (denoted M ≤deg N) if N belongs to the Zariski closure of the orbit of M . How
to characterise this algebraically? This is solved in the following result.
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Theorem 1. (Riedtmann [3], Zwara [10]) Let k be an algebraically closed field
and let A be a finite dimensional k-algebra, then for any two A-modules M and N
we get M ≤deg N if and only if there is an A-module Z and a short exact sequence
0 → Z → Z ⊕M → N → 0. We denote this second condition by M ≤Zwara N .

The geometric version ≤deg is a partial order on the set of isomorphism classes
of finite dimensional A-modules, as is easily seen.

2. Carrying the algebraic degeneration to the triangulated world

The goal of our research is to carry these constructions to the setting of trian-
gulated categories. The first easy step is to generalise ≤Zwara to triangulated
categories. k denotes from now on a commutative ring, and occasionally a field.

Definition 2. (Jensen-Su-Zimmermann [1, 2], Yoshino [8]) Let T be a triangu-
lated category. Then for any two objects M and N we denote M ≤∆ N if there is
an object Z and a distinguished triangle Z → M ⊕ Z → N → Z[1].

In [2] we proved partial order properties of ≤∆. In particular we show

Theorem 3. [2] Let T be a k-linear triangulated category with split idempotents.

• If all endomorphism algebras of objects of T are artinian, then ≤∆ is
reflexive and transitive on isomorphism classes of objects of T .

• If HomT (X,Y ) is of finite k-length for all objects X and Y , and if there
is n ∈ Z \ {0} such that HomT (M,N [n]) = 0, then

M ≤∆ N ≤∆ M ⇒ M ≃ N.

We see that the pre-order property is relatively general, whereas the partial
order property needs strong hypotheses. We should mention that Peter Webb
showed in [7] the antisymmetry by completely different methods for triangulated
categories which admit almost split triangles. Singular categories are one of our
main intended application, and there the hypotheses are not satisfied. Zhengfang
Wang proved in [6] independently that ≤∆ is a partial order on isomorphism classes
of the singular category Dsg(A) of a finite dimensional algebra A.

Remark 4. We should mention that this concept may allow to compare modules
of different dimension. Indeed, it may happen that M is an indecomposable module
of infinite projective dimension and M ≤Zwara N1 ⊕ N2 where N1 is a non-zero
module of finite projective dimension, and N2 is a module of infinite projective
dimension. Then M ≤∆ N2 in Dsg(A). A more explicit example is the following:
If A is a self-injective algebra, and P is an indecomposable projective A-module
with non zero submodule S, then P ≤deg S⊕P/S and therefore P ≤∆+nil S⊕P/S
in the stable category of A-modules. But P ≃ 0 in the stable category, whereas the
pieces S and P/S are not. Nevertheless, by definition, degeneration preserves the
class in the Grothendieck group.
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3. Geometric degeneration in triangulated categories

In joint work with Saoŕın we concentrated on a geometric definition for degen-
eration in triangulated categories. We model our geometric version on Yoshino’s
concept of a degeneration along a dvr.

Definition 5. (Yoshino) Let k be a field and let A be a k-algebra. Then for any
two A-modules M and N we say that M ≤dvr N if there is a discrete valuation
k-algebra V with maximal ideal tV and k = V/tV and a V -flat V ⊗k A-module Q
such that Q/tQ ≃ N as A-modules, and Q[ 1t ] ≃ M ⊗k V [ 1t ].

For a triangulated category C◦
V and an element t : idC◦

V
→ idC◦

V
(i.e. an element

t in the centre of C◦
V ) we can form the Gabriel-Zisman localisation C◦

V

p
→ C◦

V [t
−1],

which is again triangulated and is universal amongst all triangulated categories in
which tX becomes invertible for all objects X .

Definition 6. [4] Let C◦
k be a triangulated k-category with split idempotents.

• A degeneration data for C◦
k is given by triangulated k-categories C◦

V , Ck and
CV with split idempotents, such that C◦

V is full triangulated subcategory
of CV , and C◦

k is full triangulated subcategory of Ck, a triangle functor
↑Vk : Ck → CV restricting to a triangle functor C◦

k → C◦
V , and a triangle

functor φ : C◦
V → Ck, as well as an element t in the centre of C◦

V . We
require that φ(tM↑V

k
) is a split monomorphism with cone M for all objects

M of C◦
k.

• An object M of C◦
k degenerates to an object N of C◦

k if there is an object
Q of C◦

V such that φ(cone(tQ)) ≃ N and p(Q) ≃ p(M ↑Vk ). We write
M ≤cdeg N in this case.

It is not hard to see that this generalises Yoshino’s concept in case of stable
categories for finite dimensional self-injective algebras. The main result is

Theorem 7. Let C◦
k be a triangulated k-category with split idempotents. Then

M ≤∆+nil N ⇒ M ≤cdeg N.

If C◦
k is the category of compact objects in an algebraic compactly generated trian-

gulated k-category, then we get

M ≤∆+nil N ⇔ M ≤cdeg N.

4. Symmetry in the definition of the triangle degeneration

The definition of ≤Zwara and ≤∆ bears some non-symmetry. Zwara proved in [9]
for finite dimensional algebras A over a field and A-modules M and N that there is
an A-module Z and a short exact sequence 0 → Z → Z⊕M → N → 0 if and only
if there is an A-module Z ′ and a short exact sequence 0 → N → Z ′⊕M → Z ′ → 0.

For the relation≤∆ we may pose the same question. Since the opposite category
of a triangulated category is again triangulated, we denote by ≤∆op the triangle
relation between the corresponding objects, i.e. M ≤∆op N if and only if there is
Z ′ and a distinguished triangle N → M ⊕ Z ′ → Z ′ → N [1].
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Theorem 8. [5] Let T be a triangulated k-category with split idempotents.

• If the endomorphism ring of each object in T is artinian, then M ≤∆+nil

N ⇔ M ≤∆op+nil N .
• If Tk is the category of compact objects in an algebraic compactly generated
triangulated k-category, then M ≤∆+nil N ⇔ M ≤∆op+nil N .

We do not know if the statement is true for ≤∆ instead of ≤∆+nil. The second
statement uses our explicit construction of a degeneration and the construction of
an explicit Q as in the definition of ≤cdeg in the main theorem.
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l’École Normale Supérieure 19 (1986) 275–301.
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An Alternate Approach to the Lie Bracket on Hochschild Cohomology

Sarah Witherspoon

(joint work with Lauren Grimley, Van C. Nguyen, Cris Negron)

Let k be a field, R a k-algebra, and ⊗ = ⊗k. Let Re = R ⊗ Rop and let B
denote the bar resolution of R as Re-module. The Hochschild cohomology of R is
HH∗(R) = H∗(HomRe(B,R)) = Ext∗Re(R,R).

Gerstenhaber [4] defined the graded Lie bracket on Hochschild cohomology at
the chain level as follows. Let f ∈ HomRe(Bi, R) ∼= Homk(R

⊗i, R) and g ∈
HomRe(Bj , R) ∼= Homk(R

⊗j , R). Then [f, g] = f ◦ g − (−1)(i−1)(j−1)g ◦ f where

(f ◦ g)(r1 ⊗ · · · ⊗ ri+j−1)

=

i
∑

l=1

(−1)(j−1)(l−1)f(r1 ⊗ · · · ⊗ rl−1 ⊗ g(rl ⊗ · · · ⊗ rl+j−1)⊗ rl+j ⊗ · · · ⊗ ri+j−1).

With this bracket, and cup product, HH∗(R) is a Gerstenhaber algebra.
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We will view the circle product f ◦ g above as a composition of functions:

(1) B
∆

(2)
B−−→ B ⊗R B ⊗R B

1B⊗g⊗1B
−−−−−−−→ B ⊗R B

φB
−→ B

f
−→ R,

and g ◦ f will be defined similarly. The map ∆
(2)
B is given by (∆B ⊗ 1B)∆B

(which is equal to (1B ⊗ ∆B)∆B), where the diagonal map ∆B is a chain map
∆B : B → B ⊗R B:

∆B(r0 ⊗ · · · ⊗ ri+1) =

i
∑

j=0

(r0 ⊗ · · · ⊗ rj ⊗ 1)⊗R (1⊗ rj+1 ⊗ · · · ⊗ ri+1)

for all r0, . . . , ri+1 ∈ R. The definition of the map 1B ⊗ g ⊗ 1B above includes
signs so that on elements the map is given by x⊗y⊗z 7→ (−1)ljx⊗g(y)⊗z for all
x ∈ Bl, y ∈ Bm, z ∈ Bn. The map φB : B ⊗R B → B is a chain map of degree 1
given by

φB((1 ⊗ r1 ⊗ · · · ⊗ rl−1 ⊗ 1)⊗R r′ ⊗R (1⊗ rl+j ⊗ · · · ⊗ ri+j−1 ⊗ 1)

= (−1)l−1 ⊗ r1 ⊗ · · · ⊗ rl−1 ⊗ r′ ⊗ rl+j ⊗ · · · ⊗ ri+j−1 ⊗ 1.

Letting µ : B → R be the natural quasi-isomorphism (that is, multiplication in
degree 0 and the zero map in higher degrees), one checks that

dBφB + φBdB⊗RB = µ⊗ 1− 1⊗ µ.

In fact, any map φB satisfying the above equation also gives rise to Gerstenhaber’s
bracket on cohomology via the sequence of maps (1).

We next mimic this construction in the context of another resolution. We
will require some conditions for our proof that the resulting bracket agrees with
Gerstenhaber’s bracket on cohomology: Let K be a projective resolution of R as
an Re-module for which there is an embedding into the bar resolution B that
admits a section, and for which the diagonal map ∆B restricts to a diagonal map
∆K on K. Let µK : K → R be the natural quasi-isomorphism. For example, the
Koszul resolution of a Koszul algebra satisfies these conditions [3, 10].

Again, µK ⊗ 1− 1⊗µK is a boundary in the complex HomRe(K⊗RK,K). Let
φK : K ⊗R K → K be a map for which dKφK + φKdK⊗RK = µK ⊗ 1 − 1 ⊗ µK .
We now define a bracket at the chain level as before: Let f ∈ HomRe(Ki, A),

g ∈ HomRe(Kj, A), and ∆
(2)
K = (∆K ⊗ 1)∆K (this is equal to ∆

(2)
K = (1⊗∆K)∆K

since ∆K is induced by ∆B). Define f ◦φK
g to be the composition (1) in which

B, ∆
(2)
B , and φB are replaced by K, ∆

(2)
K , and φK , respectively. Define [f, g]φK

to

be f ◦φK
g − (−1)(i−1)(j−1)g ◦φK

f .

Theorem 1. [8] The operation [·, ·]φK
induces the Lie bracket on HH∗(R).

One advantage to this approach in defining brackets is that the chain maps
between K and B are only needed to check the required conditions. They need
not be used in any explicit computations once these conditions are known to hold.
One still may need to find and use the map φK ; in practice, this can be easier and
more illuminating than finding and using explicit chain maps between B and K. A
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formula for φK in terms of a contracting homotopy forK is given in [8, Section 3.3].
A disadvantage to this approach is that not all resolutions K satisfy the required
conditions. There are slightly weaker conditions given in [8, Section 3.4].

We give some examples and applications of this alternate approach to Gersten-
haber’s bracket: In [8] with Negron, we recover the known graded Lie structure on
HH∗(R) for R = S(V ), a symmetric algebra on a finite dimensional vector space
V , and for R = kG, G a cyclic group of prime order p where char(k) = p. For
S(V ), we see the expected identification of the bracket with the Schouten bracket
on polyvector fields on affine space. For kG, the bracket was computed more gen-
erally for cyclic groups by Sanchez-Flores [11]. In [9] with Negron, we gave some
general structure results for the Hochschild cohomology of S(V )⋊G, where G is a
finite group with representation V ; these results were presented in Negron’s talk,
and we refer to his abstract for details.

With Grimley and Nguyen in [6], we computed new examples of Gerstenhaber
brackets: Let Λq = k〈x, y〉/(x2, y2, xy + qyx), where q is a nonzero scalar. Buch-
weitz, Green, Madsen, and Solberg [2] computed the algebra structure of HH∗(Λq)
under cup product; in case q is not a root of unity, Λq has infinite global dimension
yet has finite dimensional Hochschild cohomology (which answered a question of
Happel).

In [6] we exploited the fact that Λq is a twisted tensor product (definition below)
of its subalgebras generated by x and by y. A resolution K may be defined as
a twisted tensor product of resolutions for these subalgebras, and the map φK

(in (1)) may be expressed in terms of such maps for the factors. We used this map
to compute explicitly brackets for all nonzero scalars q, describing the Lie algebra
structure of HH1(Λq) in the different cases (often it is abelian) and the structure

of HH∗(Λq) as a module over HH1(Λq). In [6] we also proved a general structure
result for the Hochschild cohomology of a twisted tensor product, as we state next,
after defining twisted tensor product.

Let R,S be k-algebras graded by abelian groups A,B. Let t : A⊗Z B → k× be
a homomorphism of abelian groups, denoted t(a⊗Z b) = t〈a|b〉 for all a ∈ A, b ∈ B.
The twisted tensor product of R and S is R⊗t S = R⊗ S as a vector space, and
(r ⊗ s) ·t (r′ ⊗ s′) = t〈|r

′|||s|〉rr′ ⊗ ss′ for all homogeneous r, r′ ∈ R and s, s′ ∈ S,
where |r′|, |s| are the degrees of r′, s in A,B (see [1]).

Assume at least one of R,S is finite dimensional. The following theorem extends
[1, Theorem 4.7] of Bergh and Oppermann who first gave the isomorphism below
as an isomorphism of associative algebras. It was proved to be an isomorphism of
Gerstenhaber algebras in the untwisted tensor product case by Le and Zhou [7].
In our proof, we use the alternate approach to brackets as described above.

Theorem 2. [6] There is an isomorphism of Gerstenhaber algebras

HH∗,A′

(R)⊗HH∗,B′

(S) ∼= HH∗,A′⊕B′

(R ⊗t S),

where the Gerstenhaber bracket on the left side is given by [7, Prop.-Defn. 2.2],
and A′ =

⋂

b∈B Ker t〈·|b〉, B′ =
⋂

a∈AKer t〈a|·〉.
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Many of the algebras Λq discussed above provide nontrivial illustrations of The-
orem 2.

As a final application, we mention Grimley’s PhD thesis [5], containing general
formulas for the Gerstenhaber algebra structure of the Hochschild cohomology of

Λ(2,...,2)
q = k〈x1, . . . , xn〉/(x

2
i , xixj + qijxjxi) and Λ(2,...,2)

q ⋊G,

where q is a set of nonzero scalars qij (i < j), and G is a finite group acting

diagonally on the set x1, . . . , xn, inducing an algebra automorphism on Λ
(2,...,2)
q .
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The Gerstenhaber bracket as a Schouten bracket for polynomial rings
extended by finite groups

Cris Negron

(joint work with Sarah Witherspoon)

We discuss here the work of [7], in which we describe the Gerstenhaber bracket
on the Hochschild cohomology of a smash product S(V )#G between a polynomial
ring S(V ) (written here as the symmetric algebra of a vector space V ) and a finite
group G acting linearly on V . We work over a field k of characteristic 0, and let
HH•(A) denote the Hochschild cohomology of an algebra A

One can understand the significance of the smash product via its category of
modules. Algebraically, modules over the S(V )#G are modules over S(V ) with
a compatible G-action, in the most obvious manner, while S(V )#G-modules can
be understood geometrically as G-equivariant sheaves on affine space, or rather
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quasi-coherent sheaves on the orbifold [An/G].1 Whence we may identify, via the
work of Lowen and Van den Bergh [5], the Hochschild cohomology of the smash
product with the Hochschild cohomology of the quotient [An/G].

Motivated by the classic Hochschild-Kostant-Rosenberg theorem [4], which we
review below, we seek a geometric description of the Hochschild cohomology of the
smash product S(V )#G, along with the Gerstenhaber bracket. Such a description
is achieved in [7] and relayed here in Section 1.2.

We note that the work [7] comes after initial contributions of Shepler-Wither-
spoon and Halbout-Tang [9, 3], and extends results therein, and that we rely on
techniques developed in the related work [6].

1.1. Review of the HKR theorem. Consider a smooth k-scheme M and let
k[M ] denote the algebra of global functions on M . Let

T poly
M

=
∧•

k[M ] TM

denote the associated algebra of polyvector fields, where TM denotes the global
section of the tangent sheaf on M , i.e. global vector fields on M . We consider

T poly
M

to be graded with TM concentrated in degree 1.
The standard bracket on vector fields TM extends uniquely to a graded Lie

structure on the shifted space ΣT poly
M

so that T poly
M

becomes a, so called, Gersten-

haber algebra. This canonical graded Lie bracket on T poly
M

is called the Schouten
bracket.

The following result is due essentially to Hochschild, Kostant, and Rosenberg [4].

The HKR theorem. Let M be a smooth k-scheme. Then there is a canonical
identification of Gerstenhaber algebras HH•(k[M ]) = T poly

M
, where the cohomology

HH•(k[M ]) is given its Gerstenhaber bracket and T poly
M

is given the Schouten
bracket.

We seek, in general, an analog of the HKR theorem for orbifold quotients
[M /G], and begin here with a study of quotients of affine space by finite linear
group actions.

1.2. The cohomology HH•(S(V )#G) and polyvector fields. Given a smash
product S(V )#G, as above, we have canonical embeddings and projections

(1) HH•(S(V )#G) →
(

⊕

g∈G T poly
An g

)G p
−→ HH•(S(V )#G),

where the “g”s in the expression T poly
An g are simply labels, and the implicit G-action

on the space
⊕

g∈G T poly
An g is induced by the standard G-action on polyvector fields

and the adjoint action of G on itself. We have a näıve extension of the Schouten

1By “orbifold” here we mean simply the stack quotient. The term orbifold refers to the fact
that we are taking the quotient by a finite group.
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bracket to the space
⊕

g∈G T poly
An g and invariants by the formula

[
∑

g∈G

Xgg,
∑

h∈G

Yhh]Sch.ext :=
∑

g,h∈G

[Xg, Yh]Sch gh,

where Xg, Yh ∈ T poly
An and the non-subscripted g, h are labels as in (1).

The situation (1) follows from a vector space description of the Hochschild
cohomology given in the works of Ginzburg-Kaledin and Farinati [2, 1],

HH•(S(V )#G) =





⊕

g∈G

T poly
(An)g det

(

T⊥
(An)g

)





G

.

We state our main result in terms of the relationship (1).

Theorem 1 ([7]). For classes
∑

g Xgg,
∑

h Yhh in the cohomology HH•(S(V )#G),

which we view as a subspace in
⊕

g∈G T poly
An g, the Gerstenhaber bracket is given by

the formula

[
∑

g∈G

Xgg,
∑

h∈G

Yhh]Gerst :=
∑

g,h∈G

p[Xg, Yh]Sch gh,

where p is the projection from (1).

We note that the projection p is completely canonical, and can be defined in
a much more general geometric context. The above theorem was achieved for
abelian G in the work of Halbout and Tang [3].

In order to give some corollaries we introduce a few more notations. Note that
the Hochschild cohomology has a canonical decomposition

(2) HH•(S(V )#G) =

dim(V )
⊕

i=1

D(i),

where D(i) is the collection of polyvector fields labeled by group elements for
which the fixed space V g is of codimension i. The first possibly nonzero class in
each D(i) will occur in degree i.

Corollary 2 ([7]). (1) Let X ∈ D(i) and Y ∈ D(j) be classes of respective
degrees i and j. Then [X,Y ]Gerst = 0.

(2) The Hochschild cohomology is a graded Gerstenhaber algebra under the
codimension grading (2), i.e. the cup product and bracket satisfy D(i) ·
D(j) ⊂ D(i+ j) and [D(i),D(j)] ⊂ D(i + j).

The result (1) generalizes a vanishing result of [9], which applied originally to
classes in degree 2, and (2) was pointed out to us by Travis Schedler. The fact that
the Hochschild cohomology is graded, as an algebra, by the codimension grading
was already known [8], while the fact that the bracket respects the codimension
grading is new.
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Koszul Calculus

Andrea Solotar

(joint work with Roland Berger, Thierry Lambre)

The idea of this joint work with Ronad Berger and Thierry Lambre is to present
a calculus which is well-adapted to quadratic algebras. This calculus is defined in
Koszul cohomology (homology) by cup products (cap products). Koszul homology
and cohomology are interpreted in terms of derived categories. If the algebra is
not Koszul, Koszul (co)homology provides different information than Hochschild
(co)homology. Koszul homology is related to de Rham cohomology. If the algebra
is Koszul, Koszul cohomology is related to the Calabi-Yau property. The calculus
is made explicit on a non-Koszul example.

Quadratic algebras are associative algebras defined by homogeneous quadratic
relations. Since their definition by Priddy [7], Koszul algebras form a widely
studied class of quadratic algebras [6]. In his monograph [5], Manin brings out
a general approach of quadratic algebras (not necessarily Koszul), including the
fundamental observation that quadratic algebras form a category which should
be a relevant framework for a noncommutative analogue of projective algebraic
geometry. According to this general approach, non-Koszul quadratic algebras
deserve certainly more attention.

The goal here is to introduce new general tools for studying quadratic algebras.
These tools consist in a (co)homology, called Koszul (co)homology, together with
products, called Koszul cup and cap products. They are organized in a calculus,
called Koszul calculus. If two quadratic algebras are isomorphic in the sense of
the Manin category, their Koszul calculus are isomorphic. If the quadratic algebra
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is Koszul, the Koszul calculus is isomorphic to Hochschild (co)homology endowed
with usual cup and cap products – called Hochschild calculus. .

The Koszul homology HK•(A,M) of a quadratic algebra A with coefficients in
a bimodule M is defined by applying the functorM⊗Ae− to the Koszul complex of
A, analogously for the Koszul cohomology HK•(A,M). If A is Koszul, the Koszul
complex is a projective resolution of A, so that HK•(A,M) (resp. HK•(A,M))
is isomorphic to the Hochschild homology HH•(A,M) (resp. Hochschild coho-
mology HH•(A,M)). Restricting the Koszul calculus to M = A, we present
a non-Koszul quadratic algebra A which is such that HK•(A) ≇ HH•(A) and
HK•(A) ≇ HH•(A). So HK•(A) and HK•(A) provide further invariants associ-
ated to the Manin category, besides those provided by Hochschild (co)homology.
We have proven that Koszul homology (cohomology) is isomorphic to a Hochschild
hyperhomology (hypercohomology), showing that this new homology (cohomol-
ogy) becomes natural in terms of derived categories.

For any unital associative algebra A, the Hochschild cohomology of A with coef-
ficients in A itself, endowed with the cup product, has a richer structure provided
by Gerstenhaber product ◦, called Gerstenhaber calculus [1]. When ◦ is replaced
in the structure by the graded bracket associated to ◦, that is, the Gerstenhaber
bracket [−,−], the calculus becomes a Gerstenhaber algebra [1]. Next, the Ger-
stenhaber algebra and the Hochschild homology of A, endowed with cap products,
are organized in a Tamarkin-Tsygan calculus [8], see also [4]. In the Tamarkin-
Tsygan calculus, the Hochschild differential b is defined from the multiplication µ
of A and the Gerstenhaber bracket by

(1) b(f) = [µ, f ]

for any Hochschild cochain f .
The obstruction to see the Koszul calculus as a Tamarkin-Tsygan calculus is the

following: the Gerstenhaber product ◦ does not make sense on Koszul cochains.
However, this negative answer can be bypassed by the fundamental formula of the
Koszul calculus

(2) bK(f) = −[eA, f ]⌣
K

where bK is the Koszul differential, eA is the fundamental 1-cocycle and f is any
Koszul cochain.

In formula (2), [−,−]⌣
K

is the graded bracket associated to the Koszul cup

product ⌣
K
. In other words, the Koszul differential may be defined from the Koszul

cup product. Therefore, the Koszul calculus is simpler than the Tamarkin-Tsygan
calculus, since no additional product such as ◦ is required to express the differ-
ential by means of a graded bracket. The Koszul calculus is more flexible since
the formula (2) is valid for any bimodule M , while the definitions of Gerstenhaber
product and bracket are meaningless when considering other bimodules of coeffi-
cients [2]; it is also more symmetric since there is an analogue of (2) in homology,
where the Koszul cup product is replaced by the Koszul cap product.
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In [3], Ginzburg mentions that the Hochschild cohomology algebras of A and
its Koszul dual A! are isomorphic if the quadratic algebra A is Koszul. As an
application of Koszul calculus, we obtain such a Koszul duality theorem linking
the Koszul cohomology algebras of A and A! for any quadratic algebra A, Koszul
or not. So the true nature of the Koszul duality theorem is independent of any
assumption on quadratic algebras. The proof of our result lies on a Koszul du-
ality at the level of Koszul cochains and uses standard facts on duality of finite
dimensional vector spaces.

In the Tamarkin-Tsygan calculus, the Connes differentialB defined on Hochschild
homology is an essential ingredient. Although B does not send Koszul chains to
Koszul chains, we have solved the question to find such a differential at the level
of Koszul homology classes for some very particular cases, the general case being
open. An important role is played by the Rinehart-Goodwillie operator whose
Koszul analogue is the left Koszul cap product by the fundamental 1-cocycle eA,
leading to the higher Koszul homology of A. We conjecture that a quadratic al-
gebra A is Koszul if and only if its higher Koszul homology annihilates in positive
degrees.
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Hochschild cohomology of a smash product with a cyclic group

Yuri Volkov

1. The general problem

Let us fix some field k and an associative unital k-algebra A. We write simply ⊗
instead of⊗k. Also we fix some finite groupG with homomorphism η : G → AutA.
We write simply αa instead of η(α)(a) for α ∈ G and a ∈ A.

We define the smash product A#kG in the following way. The algebra A#kG
is isomorphic to A ⊗ kG as a vector space. The multiplication of the elements
a⊗ α, b ⊗ β ∈ A#kG is defined by the formula

(a⊗ α)(b ⊗ β) = aαb⊗ αβ.
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For simplicity we write aα instead of a ⊗ α and AG instead of A#kG. We fix
also some AG-bimodule M . Note that G acts on M by the rule αx = αxα−1 for
α ∈ G and x ∈ M . This action and the action of G on A induce an action of G
on HH∗(A,M).

It is well known (see, for example, [1], [2] and [3]) that in this case there is a
spectral sequence

(1) Ei,j
2 = Hi(G,HHj(A,M)) ⇒ HHi+j(AG,M)

From now we assume that there is some map µM : M ⊗ M → M , which
defines a structure of unital associative algebra on M and induces an AG-bimodule
homomorphism fromM⊗AGM toM . Such µM induces a graded algebra structure
on HH∗(AG,M). Then the spectral sequence (1) is a spectral sequence of algebras.
The multipliation on the seond page is simply cup product on the cohomology of
G with coefficients in the kG-module algebra HH∗(A,M).

If k is a field such that chark ∤ |G|, then the spectral sequence (1) collapses at
the second page and we obtain isomorphism of algebras HH∗(A,M)G ∼= HH∗(AG,
M). This result is good enough, but the situation becomes more difficult if chark |
|G|. So the question considered here is

Question 1. How the algebras HH∗(A,M)G and HH∗(AG,M) are related in the
case where chark | |G|?

2. Results

The results presented here and in the next section are obtained by the author of
the present text in the joint work with E. Marcos. Assume that chark = p > 0 and
G is a cyclic group of order q, where q is some power of p (in fact our methods work
for such group G that has a normal subgroup H such that p ∤ |H | and G/H = Cq).

We say that a spectral sequence E is (R,S)-degenerated if Ei,j
R = 0 for i ≥ S.

Then the following theorem is true.

Theorem 1. dimk HH
n(AG,M) ≥ dimkHH

n(A,M)G for any n ≥ 0. Moreover,
the following conditions are equivalent:
1. the sequence (1) is (3, 2)-degenerated;
2. dimk HH

n(AG,M) = dimk HH
n(A,M)G for any n ≥ 0;

3. dimk HH
1(AG,M) = dimk HH

1(A,M)G.

From here on we consider the case of (3, 2)-degeneration. Let ρ denote some
generator of Cq. If A is a graded algebra and D : A → A is a graded deriva-
tion, then we define the graded algebra A[x,D] in the following way. Its un-
derlining graded vector space is the space A[x] with n-th component generated
by the elements of the form axi where a ∈ An−i. The multiplication of two
elements from A ⊂ A[x,D] or two elements from k[x] ⊂ A[x,D] is defined as
usual. We define the left multiplication of a ∈ Ai by the elemet x by the equality
xa = (−1)iax+D(a). Let W be the ideal of HH∗(A,M)G defined by the equality
W = (1− ρ)q−1 HH∗(A,M).
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A more or less good answer to Question 1 in the case of (3, 2)-degenerating is
given by the following theorem.

Theorem 2. There is a graded subalgebra A of HH∗(A,M)G containing W such
that HH∗(A,M)G/W = (A/W )[x,D]/〈x2 − a〉 for some graded derivation D of
A and some a ∈ A. At the same time there is a graded ideal X of HH∗(AG,M)
such that X2 = 0 and HH∗(AG,M)/X ∼= A. Moreother, there are two filtrations
of graded A-bimodules

0 = Xq−1 ⊂ Xq−2 ⊂ · · · ⊂ X1 ⊂ X0 = X

and

0 = Yq−1 ⊂ Yq−2 ⊂ · · · ⊂ Y1 ⊂ Y0 = (A/W )[−1]

such that Yi/Yi+1
∼= Xq−2−i/Xq−1−i for 0 ≤ i ≤ q − 2. Moreover, if (1 −

ρ)i HH∗(A,M)H = HH∗(A,M)G for some 0 ≤ i ≤ q − 1, then Xq−1−i = 0 = Yi+1

and X = Xq−2−i
∼= Yi = (A/W )[−1].

Remark 1. If HH∗(A,M)G is graded commutative, then D = 0. If additionally
p 6= 2, then we have also a = 0.

3. Application

Let R be a finite dimensional k-algebra. We denote by DR the R-bimodule
Homk(R,k). Let TR be a trivial singular extension of R by DR, i.e. TR is an
algebra, whose underlining space is R⊕DR and the multiplication is defined by
the equality (a, û)(b, v̂) = (ab, av̂ + ûb) for a, b ∈ R and û, v̂ ∈ DR. There is a
Cn-grading on TR such that (TR)0 = R and (TR)1 = DR. This grading induces
a Cn-grading on HH∗(TR).

Let Rn denotes the algebra, whose underlining space is (R ⊕ DR)n and the
multiplication is defined by the equality

(a1, û1, . . . , an, ûn)(b1, v̂1, . . . , bn, v̂n) = (a1b1, a1v̂1 + û1b2, . . . , anbn, anv̂n + ûnb1)

for a1, . . . , an, b, . . . , bn ∈ R and û1, . . . , ûn, v̂1, . . . , v̂n ∈ DR. There is an action
of Cn = 〈ρ | ρn = 1〉 on Rn defined by the equality

ρ(a1, û1, . . . , an, ûn) = (a2, û2, . . . , an, ûn, a1, û1).

Since Cn acts on Rn by powers of Nakayama automorphism, it follows from
[4, Corollary 2] that HH∗(Rn) = HH∗(Rn)

Cn . In particular, if chark ∤ n, then
HH∗(Rn) ∼= HH∗(TR)0. We can apply our results to obtain the following theorem.

Theorem 3. Let R be a finite dimensional k-algebra and n ≥ 1 be some integer
such that chark | n. Then there is a graded algebra An such that HH∗(Rn) is
a trivial singular extension of An by An[−1] and HH∗(TR)0 is some singular
extension of An by An[−1]. In other words,

HH∗(Rn) ∼= An[x, 0]/x
2

and there is an exact sequence of An-modules

An[−1] ֌ HH∗(TR)0 ։ An,
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which becomes an exact sequence of algebras if we equip An[−1] with zero multi-
plication.
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Singular Hochschild cohomology and Gerstenhaber algebra structure

Zhengfang Wang

Let k be a commutative ring and A be a k-algebra such that A is projective as a k-
module. Recall that for any m ∈ Z, the Hochschild cohomology group HHm(A,A)
can be viewed as the Hom-space from A to A[m] in the bounded derived category
Db(A⊗k A

op) of the enveloping algebra A⊗Aop. Namely, we have

HHm(A,A) = HomDb(A⊗kAop)(A,A[m]).

In particular, we have that the negative part HH<0(A,A) vanishes. From this
motivation, we replace the bounded derived category Db(A ⊗k Aop) by the sin-
gular category Dsg(A ⊗ Aop) [1, 2], which is the Verdier quotient of the bounded
derived category Db(A⊗Aop) by the full subcategory Kb(A⊗Aop-proj) consisting
of perfect complexes of A-modules and define the singular Hochschild cohomology
(denoted by HHm

sg(A,A)) of degree m as the Hom-space from A to A[m] in the
singular category Dsg(A⊗Aop). Namely, we define

HHm
sg(A,A) := HomDsg(A⊗Aop)(A,A[m]).

Different from the Hochschild cohomology HH∗(A,A), we note that in general
HH<0

sg (A,A) does not vanish.

Denote by Ωp(A) the kernel of the differential dp−1 : A⊗p+1 → A⊗p in the bar
resolution Bar∗(A). Denote Cm(A,Ωp(A)) := Homk(A

⊗m,Ωp(A). Construct a
k-linear map

θm,p : Cm(A,Ωp(A)) → Cm+1(A,Ωp+1(A))

as follows, for any f ∈ Cm(A,Ωp(A)),

θm,p(f)(a1 ⊗ a2 ⊗ · · · ⊗ am+1) := (−1)pd(f(a1 ⊗ · · · ⊗ am)⊗ am+1 ⊗ 1)
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where a1 ⊗ · · · ⊗ am+1 ∈ A⊗m+1 and d represents the differential in the bar reso-
lution Bar∗(A). Then we have the following double complex C∗(A,Ω∗(A)):

... // Cm−1(A,Ωp−1(A))

θ

))❙
❙

❙
❙

❙
❙

❙

δ //

0

OO

Cm(A,Ωp−1(A))

θ

))❙
❙

❙
❙

❙
❙

❙

δ //

0

OO

Cm+1(A,Ωp−1(A))

0

OO

//

θ

&&▼
▼

▼
▼

▼
▼

▼
...

... // Cm−1(A,Ωp(A))

θ

))❙
❙

❙
❙

❙
❙

❙

δ
//

0

OO

Cm(A,Ωp(A))

θ

))❙
❙

❙
❙

❙
❙

❙

δ
//

0

OO

Cm+1(A,Ωp(A))

θ

&&▼
▼

▼
▼

▼
▼

▼

0

OO

// ...

... // Cm−1(A,Ωp+1(A))
δ

//

0

OO

Cm(A,Ωp+1(A))
δ

//

0

OO

Cm+1(A,Ωp+1(A))

0

OO

// ...

...

OO

...

OO

...

OO

We denote the colimit of the inductive system

Cm−1(A,Ωp−1(A))
θm−1,p−1

// Cm(A,Ωp(A))
θm,p

// // · · ·

by Cm−p
sg (A,A). That is, for any m ∈ Z,

Cm
sg (A,A) := lim

−→
r∈Z≥0

m+r≥0

Cm+r(A,Ωr(A)).

So we obtain a complex C∗
sg(A,A) (called singular Hochschid cochain complex)

· · · // Cm−1
sg (A,A)

δ
m−1

// Cm
sg (A,A)

δ
m

// Cm+1
sg (A,A) // · · · ,

where the differential δ is induced from the Hochschild differential in the double
complex above. Then we have the following result.

Theorem 1. (1) For any m ∈ Z, Hm(C∗
sg(A,A))

∼= HHm
sg(A,A).

(2) There is a generalized Gerstenhaber bracket [·, ·] defined in the total com-
plex Tot(C∗(A,Ω∗(A))) which makes C∗

sg(A,A) into a differential graded
Lie algebra.

(3) HH∗
sg(A,A) is a Gerstenhaber algebra with the Yonede-product and the

generalized Gerstenhaber bracket [·, ·] above.

We give a PROP interpretation for the generalized Gerstenhaber bracket in the
total complex Tot(C∗(A,Ω∗(A))). For any m, p ∈ Z≥0, we denote PA(m, p) :=
Cm(A,Ωp−1(A)), here we use the notation Ω−1(A) := k. Then we have the fol-
lowing results.
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Theorem 2. Let P be a (non-symmetric) PROP over k. Then there is a Z-graded
Lie algebra structure on the total space

P>0 :=
⊕

m,p∈Z>0

P(m, p)

where the Z-grading is defined as follows: for n ∈ Z,

(P>0)n :=
⊕

m,p∈Z>0
m−p=n

P(m, p).

Theorem 3 (Joint-work with Guodong Zhou). PA is indeed a PROP and the two
Lie brackets on PA coincide.

At last, we have the invariance of the Gerstenhaber algebra structure in
HH∗

sg(A,A) under singular equivalences of Morita type with level [3] or derived
equivalences.

Theorem 4. Let k be a field. Let A and B be two finite-dimensional k-algebras.
Suppose that a paris of bimodules (AMB,B NA) defines a singular equivalence of
Morita type with level l ∈ Z≥0 between A and B. Then the functor [l] ◦ (M ⊗B

−⊗B N) induces an isomorphism of Gerstenhaber algebras

[l] ◦ (M ⊗B −⊗B N) : HH∗
sg(B,B) → HH∗

sg(A,A).
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Batalin-Vilkovisky structures in Hochschild cohomology and Poisson
cohomology

Guodong Zhou

This report is an extended version of the abstract of the talk I gave in this Ober-
wolfach meeting. It summarizes a small amount of known results, by no means
all, about Batalin-Vilkovisky structure in Hochschild cohomology and Poisson co-
homology.



Hochschild Cohomology in Algebra, Geometry, and Topology 487

1. Gerstenhaber algebras, differential calculi and
Batalin-Vilkovisky algebras

A Gerstenhaber algebra over a field k is a N-graded vector space together with a
cup product and a Lie bracket of degree 1 such that it is a graded commutative
algebra via the cup product and that it becomes a graded Lie algebra via the Lie
bracket, and furthermore, they satisfies a compatibility condition.

A differential calculus is the data (H∗,∪, [ , ],H∗,∩, B) of N-graded vector
spaces satisfying the following properties:

(i) (H∗,∪, [ , ]) is a Gerstenhaber algebra;
(ii) H∗ is a graded module over (H∗,∪) via the map ∩ : Hr ⊗Hp → Hr−p, z⊗

α 7→ z∩α for z ∈ Hr and α ∈ Hp. That is, if we denote ια(z) = (−1)rpz∩α,
then ια∪β = ιαιβ ;

(iii) There is a map B : H∗ → H∗+1 such that B2 = 0 and we have the Cartan
relation

[Lα, ιβ ]gr = (−1)|α|−1ι[α,β]

where we denote

Lα = [B, ια]gr = Bια − (−1)|α|ιαB.

Many (co)homological theories give rise to differential calculi.
Let A be an associative algebra over a field k. The Hochschild cohomology

HH∗(A) of A is a Gerstenhaber algebra [5] via the cup product and the Gersten-
haber Lie bracket. Hochschild cohomogy acts on Hochschild homology via the cap
product and the Lie derivative, which together with the usual Connes’ differential
over Hochschild homology form a differential calculus; see [4][12].

Let S be a Poisson algebra. Then its Poisson cohomology groupsHP ∗(S) is also
a Gerstenhaber algebra via the wedge product and the Schouten-Nijenhuis bracket.
Poisson cohomology also acts on Poisson homology via the the cap product and
the Lie derivative, which together with the usual de Rham differential over Poisson
homology form a differential calculus. For the details, see, for example, [9].

A Batalin–Vilkovisky algebra (BV algebra for short) is a Gerstenhaber algebra
(H∗, ∪, [ , ]) together with an operator ∆: H∗ → H∗−1 of degree −1 such that
∆ ◦∆ = 0 and

[α, β] = (−1)|α|(∆(α ∪ β)−∆(α) ∪ β − (−1)|α|α ∪∆(β)),

for homogeneous elements α, β ∈ H∗.
Batalin-Vilkovisky structure first appeared in mathematical physics. It became

interesting for researchers in noncommutative differential geometry (see for exam-
ple [16]). It seems that interests of algebraists came from a result of T. Tradler
([13]), which in turn was motivated by the string topology invented by M. Chas
and D. Sullivan [1]. T. Tradler found that the Hochschild cohomology algebra of a
finite dimensional symmetric algebra, such as a group algebra of a finite group, is a
BV algebra [13]. L. Menichi [11] gave an independent proof using the language of
cyclic operads with multiplications. For precise statements, see the next section.
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2. BV structures in Hochschild cohomology

Theorem 1. [13][11] Let A be a finite-dimensional symmetric algebra or more
generally an A∞ algebra with infinite inner product. Then the Hochschild coho-
mology of A is a Batalin-Vilkovisky algebra.

Theorem 2. [6] Let A be a Calabi-Yau algebra. Then its Hochschild cohomology
HH∗(A) is a Batalin-Vilkovisky algebra.

The proofs of the above results have the same pattern. That is, under the
assumption that A is a symmetric algebra or a Calabi-Yau algebra, there exists a
paring or a duality between Hochschild cohomology and Hochschild homology, then
the Connes’ differential on Hochschild homology induces an operator on Hochschild
cohomology, which is exactly the BV operator desired.

Inspired by these results, T. Lambre introduced in [8] the notion of a differential
calculus with duality. Roughly speaking, this means that there exists a fundamen-
tal class in a certain homology group such that the cap product with it establishes
an isomorphism between cohomology groups and homology groups. This notion
explains when BV structure exists and unifies the two known cases of symmetric
algebras and Calabi-Yau algebras.

In [6], the author raised a question, which he attributed to R. Rouquier. We
proved this conjecture with X. Chen and S. Yang.

Theorem 3. [2] Let A be a Koszul Calabi-Yau algebra, and let A! be its Koszul
dual algebra (which is necessarily a graded symmetric algebra). Then there is an
isomorphism

HH•(A;A) ≃ HH•(A!;A!)

of Batalin-Vilkovisky algebras between the Hochschild cohomology of A and A!.

Recently as an application of this notion, N. Kowalzig and U. Krähmer proved
the following result, generalizing the result of Ginzburg.

Theorem 4. [7] The Hochschild cohomology ring of a twisted Calabi-Yau algebra
is also a Batalin-Vilkovisky algebra, provided the Nakayama automorphism (or the
modular automorphism) is semisimple.

Together with T. Lambre and A. Zimmermann and independently by Y. Volkov
[14], we showed an analogous result for Frobenius algebras, generalising the result
of Tradler-Menichi.

Theorem 5. [10] Let A be a Frobenius algebra with semisimple Nakayama au-
tomorphism. Then the Hochschild cohomology ring HH∗(A) of A is a Batalin-
Vilkovisky algebra.

Note that this result can be deduced from Kowalzig-Krähmer’s result via Koszul
duality.
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3. BV structures in Poisson cohomology

In the nineties, P. Xu already showed that the Poisson cohomology of a unimodular
Poisson manifold is a BV algebra [16]. It is folklore that this result holds for smooth
affine Poisson algebras.

Theorem 6. Let S be a smooth affine Poisson algebra which is unimodular. Then
the Poisson cohomology HP ∗(S) is a BV algebra.

The proof can be done following the idea of differential calculi with duality. In
fact, there is a Poincaré duality between Poisson cohomology and Poisson homol-
ogy for a unimodular smooth affine Poisson algebra and the de Rham differential
on Poisson cohomology induces the BV operator on Poisson cohomology.

For a smooth affine Poisson algebra whose canonical bundle is trivial, there is a
well known notion of modular derivation. When this modular derivation vanishes
(up to a log-Hamiltonian derivation), this Poisson algebra is unimodular. Even if
the Poisson algebra is not unimodular, there exists still a twisted Poincaré duality
between Poisson cohomogy and Poisson homology with coefficient in a certain
Poisson module. One should be able to show that when the modular derivation is
diagonalisable, Poisson cohomology is still a BV algebra.

Now we return to Frobenius Poisson algebras. In a recent paper [15] joint with
S.-Q. Wang, Q.-S.Wu and C. Zhu, we were able to define the notion of modular
derivation. C. Zhu, F. Van Oystayen and Y.-H. Zhang [17] proved the existence
of BV structure on the Poisson cohomology of a unimodular Frobenius Poisson
algebra. We generalized their result to the case when the modular derivation is
diagonalisable and we also provided examples to show that the condition to be
diagonalizable is necessary [15].
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[8] T. Lambre, Dualité de Van den Bergh et Structure de Batalin-Vilkovisky sur les algèbres
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Proper smooth local DG algebras are trivial

Yang Han

Assume that k is a field and all algebras are associative k-algebras with iden-
tity. In 1954, Eilenberg proved that if a finite dimensional algebra A is of finite
global dimension then its Cartan determinant detC(A) equals to ±1 (Ref. [2]).
Thereafter, the following conjecture was posed:

Cartan determinant conjecture. Let A be an artin algebra of finite global
dimension. Then detC(A) = 1.

The Cartan determinant conjecture remains open except for some special classes
of artin algebras. For finite dimensional algebras, the relations between n-recolle-
ments of derived categories of algebras and Cartan determinants of algebras were
clarified, and the Cartan determinant conjecture was reduced to derived simple
algebras [7]. Therefore, the Cartan determinant conjecture would be proved in-
ductively for all finite dimensional algebras if the following two statements hold:

(1) If a finite dimensional algebra A is of finite global dimension then there
is an almost complete idempotent e in A such that gl.dimeAe < ∞. Here, an
idempotent e in A is said to be almost complete if there is a complete set of
orthogonal primitive idempotent {e1, · · · , en} in A such that e =

∑n
i=2 ei.

(2) If A is a finite dimensional algebra of finite global dimension and e is an
almost complete idempotent in A such that gl.dimeAe < ∞ then the derived
category D(A) of A admits a recollement relative to D(k) and D(eAe).

In general, the statement (1) is not true though it is right for lots of algebras.
Indeed, the derived simple two-point algebras of finite global dimension [3, 6] are
counterexamples. However, the statement (2) is always true for at least finite
dimensional elementary algebras.

Theorem 1. Let A be a finite dimensional elementary algebra of finite global
dimension and e an almost complete idempotent in A such that gl.dimeAe < ∞.
Then D(A) admits a recollement relative to D(k) and D(eAe). Furthermore,
detC(A) = detC(eAe).
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For this we need to consider the DG algebras associated with simple modules.
Let A be a finite dimensional elementary algebra with Jacobson radical J , and
e1, · · · , en a complete set of orthogonal primitive idempotents in A. It follows from
[1, Theorem 4.3] that the projective module eA induces the following recollement
of derived categories of DG algebras:

D(E)
−⊗L

EEA
// D(A)

−⊗L
AEE

oo

RHomA(E,−)
oo

−⊗L
AAe

// D(eAe)

−⊗L
eAeeA

oo

RHomeAe(Ae,−)
oo

for a DG algebra E and a homological epimorphism of DG algebras A → E. The
good truncation B := τ≤0(E) of E is a DG subalgebra of E and quasi-isomorphic
to E. The DG algebra B is uniquely determined up to derived equivalence by the
idempotent e or 1 − e, or the simple module S := (1 − e)A/(1 − e)J , and called
the DG algebra associated with the simple module S.

Recall that a DG algebra A is said to be local if it satisfies: (1) A is non-positive,
i.e., Ai = 0 for all i > 0; (2) H0(A) is a right Noether local k-algebra with the
maximal ideal n and the residue field k; (3) Hi(A) is a finitely generated right
H0(A)-module for all i ≤ 0.

Proposition 2. The DG algebra B associated with the simple module S is local.

Recall that a DG algebraA is said to be proper or compact if its total cohomology
H∗(A) =

∐

i∈Z
Hi(A) is finite dimensional.

Proposition 3. The DG algebra B associated with the simple module S is proper
if and only if ToreAe

∗ (Ae, eA) :=
∐∞

i=0 Tor
eAe
i (Ae, eA) is finite dimensional, i.e.,

ToreAe
i (Ae, eA) = 0 for i ≫ 0.

Recall that a DG algebra A is said to be smooth or homologically smooth if A
is compact in D(Ae), where Ae := Aop ⊗k A is the enveloping DG algebra of A.

Proposition 4. The DG algebra B associated with the simple module S is smooth
if and only if the Yoneda algebra Ext∗A(S, S) of S is finite dimensional.

Thanks to these propositions, Theorem 1 can be deduced from the following
theorem:

Theorem 5. A proper smooth local DG algebra B is quasi-isomorphic to k.

Proof. Step 1. By Keller’s cyclic functors [5], we can prove thatHHi(B) ∼= HHi(k)
for all i ∈ Z.

Step 2. We can show that HH0(H
0(B)) ∼= HH0(B). Thus HH0(H

0(B)) ∼=
HH0(B) ∼= HH0(k) ∼= k by Step 1.

Step 3. If C is a finite dimensional elementary local algebra and HH0(C) ∼= k
then C ∼= k. Thus H0(B) ∼= k by Step 2.
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Step 4. By Jørgensen’s amplitude inequality [4], we can show that ampB = 0,
i.e., B admits nonzero cohomology only on degree zero. Therefore, B is quasi-
isomorphic to the good truncation τ≥0(B) ∼= H0(B) ∼= k as DG algebras by Step
3. �
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Hochschild cohomology of ring objects

Petter Andreas Bergh

(joint work with Magnus Hellstrøm-Finnsen)

This is a report on recent work by my PhD student Magnus Hellstrøm-
Finnsen.

Let (C,∧, I, α, λ, ρ) be a monoidal category. Thus C is a category equipped with
a bifunctor

∧ : C × C −→ C

(A,B) 7→ A ∧B

called the smash product, and a unit object I for this product. The associator α
and left and right unitors λ and ρ are all natural isomorphisms with components

αA,B,C : (A ∧B) ∧ C −→ A ∧ (B ∧ C)

λA : I ∧ A −→ A

ρA : A ∧ I −→ A,

and these are related by two (classes of) commutative diagrams: the pentagon
diagram and the triangle diagram.

A ring object (or monoid) in C is a triple (R, µ, e), where R is an object and

µ : R ∧R −→ R

e : I −→ R
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are morphisms in C, called the multiplication and the unit. These are subject to
the following commutative diagrams:

(R ∧R) ∧R
α

//

µ∧1

��

R ∧ (R ∧R)

1∧µ

��

R ∧R
µ

// R R ∧R
µ

oo

R
λ−1

//

1

**❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱ I ∧R
e∧1

// R ∧R

µ

��

R ∧ I
1∧e

oo R
ρ−1

oo

1

tt❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤

R

We now follow Hochschild’s original approach from [4], and define the Hochschild
complex and cohomology for a ring object in a monoidal category enriched over
abelian groups.

Definition 1. Let (C,∧, I, α, λ, ρ) be a monoidal category enriched over abelian
groups, and (R, µ, e) a ring object.

(1) The Hochschild complex of R is the sequence

HR : HomC(I, R)
d0

−→ HomC(R,R)
d1

−→ HomC(R
∧2, R)

d2

−→ HomC(R
∧3, R)

d3

−→ · · ·

of abelian groups, with maps given by

d0f =
(

µ ◦ (f ∧ 1) ◦ λ−1
)

−
(

µ ◦ (1 ∧ f) ◦ ρ−1
)

dnf = (µ ◦ (1 ∧ f) ◦ α) +

n
∑

i=1

(−1)i
(

f ◦ α−1 ◦ µn
i ◦ α

)

+ (−1)n+1 (µ ◦ (f ∧ 1)) .

(2) The Hochschild cohomology of R is defined as the cohomology of the Hoch-
schild complex HR, i.e.

HHn(R) = Hn
(

HR
)

= Ker dn/ Imdn−1,

where d−1 is the zero map 0 −→ HomC(I, R).

Remark 2. (1) The proof showing that the sequence HR is a complex involves
pairing terms together in such a way that they cancel each other.

(2) In the definition of the map dn, the associators α and α−1 appearing are
in general compositions of the components of the associator in C. Modulo these
associators, the map µn

i : R
∧(n+1) −→ R∧n is a smash product of the form 1∧· · ·∧

µ ∧ · · · ∧ 1, involving the multiplication µ once.
(3) There is related work by Ardizzoni, Menini and Ştefan in [1], where they

define Hochschild cohomology of ring objects in abelian monoidal categories by
constructing “bimodule resolutions”.
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As in the classical case of Hochschild cohomology of algebras, one can interpret
the low dimensional groups HH0(R),HH1(R) and HH2(R) in terms of central ele-
ments, derivations and extensions. For instance, the kernel of the map d1 consists
of all maps f ∈ HomC(R,R) satisfying the equality

f ◦ µ = (µ ◦ (1 ∧ f)) + (µ ◦ (f ∧ 1)) ,

and these should be thought of as the derivations of R. The image of d0 should
be thought of as the set of inner derivations of R, so that HH1(R) becomes the
group of outer derivations on R.

As in the classical case, the Hochschild cohomology of a ring object (R, µ, e)
admits a cup product. Take two cocycles

f ∈ Kerdm ⊆ HomC(R
∧m, R),

g ∈ Ker dn ⊆ HomC(R
∧n, R),

and define f ⌣ g as the following compositions:

f ⌣ g :



























R∧(m+n) α
−→ R∧m ∧R∧n f∧g

−−→ R ∧R
µ
−→ R if m,n ≥ 1,

R∧m ρ−1

−−→ R∧m ∧ I
f∧g
−−→ R ∧R

µ
−→ R if m ≥ 1, n = 0,

R∧n λ−1

−−→ I ∧R∧m f∧g
−−→ R ∧R

µ
−→ R if m = 0, n ≥ 1,

I
ρ−1=λ−1

−−−−−−→ I ∧ I
f∧g
−−→ R ∧R

µ
−→ R if m = n = 0.

This is again a cocycle, i.e. f ⌣ g is an element of

Ker dm+n ⊆ HomC(R
∧(m+n), R).

Moreover, we obtain a well defined cup product

⌣ : HHm(R)⊗Z HHn(R) −→ HHm+n(R),

giving the Hochschild cohomology HH∗(R) = ⊕∞
n=0 HH

n(R) of R the structure of
a graded ring. The identity element of HH∗(R) is the unit e : I −→ R of R.

Theorem 1 (Hellstrøm-Finnsen, 2016). If (R, µ, e) is a ring object in a monoidal
category (C,∧, I, α, λ, ρ) enriched over abelian groups, then its Hochschild coho-
mology ring HH∗(R) is graded-commutative with the cup product.

The proof uses the notions of right pre-Lie systems and pre-Lie rings from [2]
and [3]
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The Lie bracket in Hochschild cohomology via the homotopy category
of projective bimodules

Reiner Hermann

(joint work with Johan Steen)

1. The Lie bracket in Hochschild cohomology

Setup. Throughout, we let K be a commutative ring and A a unital and as-
sociative K-algebra, which will be assumed to be projective as K-module. We
let Aev = A ⊗K Aop be the enveloping algebra of A over K, and K−

Aev be the
homotopy category K−(Proj(Aev)) of bounded below complexes of projective bi-
modules. Recall that K−

Aev
∼= D−(Aev) by taking “projective resolutions”. If C is

a category, C(X,Y ) will denote the set of morphisms between X,Y ∈ ObC.

1.1. Background. In 1963, Murray Gerstenhaber discovered a graded Lie bracket
in Hochschild cohomology which governs not only the deformations of the under-
lying algebra, but also the possible Poisson structures on its center (see [2, 3, 13]).
Whereas the multiplicative structure of the Hochschild cohomology algebra can
be understood by numerous means, the Lie bracket seems to be a less transparent
additional piece of structure. In current work in progress (see [7]) we address the
following questions that naturally arise in this context:

(1) Given a projective resolution P → A → 0 of A over Aev, how can one express
the Lie bracket {−,−}A on HH•(A) in terms of P? (Classically, the Lie bracket
is defined in terms of the bar resolution B(A).)

(2) How can one (intrinsically) define a bimap on D(Aev)(A,Σ•A) which identifies

with {−,−}A along the isomorphism HH•(A)
∼

−−→ D(Aev)(A,Σ•A)?

Answers can, as we will demonstrate, be obtained from what is frequently con-
sidered a major weakness of the theory of triangulated categories, namely the
non-functoriality of cones.

1.2. Loop bracket. An important step towards a solution of the above prob-
lems was made by Stefan Schwede in [12], where he described the Lie bracket
in Hochschild cohomology in terms of bimodule extensions. In fact, his interpre-
tation made clear that the bracket somewhat reflects the ambiguity of choosing
representatives of products of elements in HHn(A) = ExtnAev(A,A). More pre-
cisely, Schwede took advantage of the monoidal structure of (Mod(Aev),⊗A, A) to
produce, for given m- and n-self extensions S and T of A with Yoneda composite
S ◦ T , a loop

S ⊠A T

##
❋❋

❋❋
❋

{{①①
①①
①①

Ω(S, T ) ≡ S ◦ T (−1)mnT ◦ S

(−1)mnT ⊠A S

<<①①①①①

bb❋❋❋❋❋❋
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in the category Extm+n
Aev (A,A) of (m+n)-self extensions of A over Aev, that is, an

element in the fundamental group, see [10], π1(Ext
m+n
Aev (A,A), S ◦ T ). This loop

identifies with an element in Extm+n−1
Aev (A,A) thanks to Vladimir Retakh (see [9]

and [11]) who gave an isomorphism

Extn−1
R (U, V )

∼
−−→ π1(Ext

n
R(U, V ), S′) (for a ring R and U, V ∈ Mod(R))

which is, in an appropriate sense, independent of the taken base point S′. Schwede’s
main theorem in this context is now the following.

Theorem 1 (see [12, Thm. 3.1]). Let m,n > 1 be integers. Then for all homoge-
neous elements a ∈ HHm(A) and b ∈ HHn(A), represented by extensions S = S(a)
and T = T (b) respectively, the Gerstenhaber bracket {a, b}A of a and b identifies
with the image of the loop Ω(S, T ) in Extm+n−1

Aev (A,A).

Schwede’s construction can be extended to the much broader context of exact
monoidal categories (see [4, 6]) making it, to some extent, functorial with respect
to monoidal functors. This turned out to be a powerful tool enabling the study of
the bracket by means of homological algebra (see for instance [5]).

2. The main result

2.1. Verdier’s Lemma. Recall that Verdier’s classical 4× 4-Lemma asserts that
a given commutative square in a triangulated category (T,ΣT) can be completed to
a grid of 8 distinguished triangles containing it. Here, we state a slightly modified
version of this lemma.

(†)

X //

��

Y //

��

Z //

��

ΣTX

��

X ′′

��

f ′′

// Y ′′

��

complete
///o/o

X ′ //

��

Y ′ //

��

Z ′ //

c

��

ΣTX
′

��

ΣTX
ΣTf

// ΣTY X ′′

��

f ′′

//

��

Y ′′ //

��

Z ′′ //

��

−1

ΣTX
′′

��

ΣTX //
ΣTf

// ΣTY // ΣTZ // Σ2
T
X

All the squares in the completed diagram commute, except the one in the lower
right hand corner which anti-commutes. Notice that this completion process is
not unique in general, however, all the objects in the 4 × 4-diagram are, up to
(non-canonical) isomorphisms in T, uniquely defined. Special attention will be
given to the morphism c later on.

2.2. The fundamental group of a morphism. Let (T,ΣT) be a triangulated
category as before. In [1], Ragnar-Olaf Buchweitz introduced the fundamental
group of a morphism in T aiming for an adequate triangulated analogue of fun-
damental groups of extension categories. Formally, for a morphism α : X → ΣTY
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in T and t some distinguished triangle Y
iα

−−→ E
pα

−−−→ X
α

−−→ ΣTY containing it,
the corresponding fundamental group is defined as the subgroup

π1(α, t) ⊆ AutT(E)

of all automorphisms χ : E → E satisfying χ ◦ iα = iα and pα ◦ χ = pα (that is,
all automorphisms that give rise to an endomorphism of the triangle t). In the
same way as the fundamental group of an extension category measures the liberty
of choosing representatives of elements in Ext-groups, it resembles the fact that
taking cones of morphisms is, in general, a highly non-unique process. Indeed, one
of Buchweitz’ main observations is the existence of canonical isomorphisms

exp(−iα∗ p
∗
α) : T(X,Y )

∼
−−→ π1(α, t) ,

where X and Y are objects in T satisfying suitable Hom-vanishing conditions (be-
ing fulfilled for, e.g., stalk complexes in the derived category), and iα∗ = T(E, iα),
p∗α = T(pα, Y ). The fundamental group of a morphism will play a key role in the
considerations below.

2.3. A sketch of the construction. In the following, we will give an idea on
how to define a bracket operation [−,−]A : K−

Aev(P,ΣmP ) × K−
Aev(P,ΣnP ) →

K−
Aev(P,Σm+n−1P ). To begin with, we complete four very specific commutative

squares to four 4× 4-diagrams à la Verdier. Given two morphisms α : P → ΣmP

and β : P → ΣnP , we consider the associated “standard triangles” Σm−1P
iα

−−→

Eα
pα

−−−→ P
α

−−→ ΣmP and Σn−1P
iβ

−−→ Eβ
pβ

−−−→ P
β

−−→ ΣnP . Denoting the

tensor product on K−
Aev by ⊗ (which is extending ⊗A to complexes), the triangles

give rise to the commutative squares in K−
Aev below.

Eα ⊗ Σn−1P
pα⊗iβ

//

�10

��

P ⊗ Eβ

α⊗Eβ

��

Σn−1P ⊗ Eα
iβ⊗pα

//

�20

��

Eβ ⊗ P

Eβ⊗α

��

ΣmA⊗ Eβ ΣmP ⊗ Eβ Eβ ⊗ ΣmA Eβ ⊗ ΣmP

Eβ ⊗ Σm−1P
pβ⊗iα

//

�30

��

P ⊗ Eα

β⊗Eα

��

Σm−1P ⊗ Eβ

iα⊗pβ
//

�40

��

Eα ⊗ P

Eα⊗β

��

ΣnP ⊗ Eα ΣnP ⊗ Eα Eα ⊗ ΣnP Eα ⊗ ΣnP

For each of these squares �i, we will obtain a (in general non-unique) isomorphism
c = c(�i) (as indicated in (†)). The upshot will be, that the four morphisms c(�i),
for i = 1, . . . , 4, can very naturally be modified to be composable isomorphisms.
Their composite will constitute a morphism χ(α, β) in π1(γ, t(γ)), for γ = (Σ|β|α)◦
β and t(γ) the corresponding standard triangle, which will lead us to define

[−,−]A : K−
Aev(P,Σ

mP )×K−
Aev(P,Σ

nP ) −→ K−
Aev(P,Σ

m+n−1P )

by [α, β]A = exp(−uγ
∗v∗γ)

−1(χ(α, β)). We now prove the following.
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Theorem 2. Under the canonical isomorphism

HH•(A) = Ext•Aev(A,A)
∼

−−→ K−
Aev(P,Σ

•P ) ,

the Gerstenhaber bracket {−,−}A on HH•(A) is taken to the bracket [−,−]A on
K−

Aev(A,Σ•A) described above.

The proof of Theorem 2 makes use of the canonical functor ExtnR(U, V ) → D(R)
given by double truncation, that is, by mapping an n-extension 0 → V → E →
U → 0 to the middle term complex E concentrated in (homological) degrees 0 up
to n − 1. This functor turns morphisms into isomorphisms and thus gives rise
to a group homomorphism π1(Ext

n
R(U, V ), S) → AutD(R)(E) for each n-extension

S with middle term complex E, which factors through the fundamental group of
the morphisms α(S) : U → ΣnV corresponding to the equivalence class of S in
ExtnR(U, V ).

2.4. Consequences and perspectives. Intriguing consequences of the theorem
are the derived invariance of the bracket (cf. [8]), even better, that any monoidal
and triangulated functor will induce a homomorphism of Gerstenhaber algebras.
We expect that from here there is a lot more to gain, such as an interplay of
recollements of derived categories and the Gerstenhaber bracket in Hochschild
cohomology. This direction, however, remains to be investigated.
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Hochschild cohomology of monomial algebras

Maŕıa Julia Redondo

(joint work with Lucrecia Román)

The aim of this talk is to present some recent results concerning the Gersten-
haber structure of the Hochschild cohomology of a monomial algebra. We use the
Bardzell resolution [1] in order to compute it, and we define comparison morphisms
between the Bardzell resolution and the standard bar resolution in order to get
conditions for the non-vanishing of the cup product and the Lie bracket.

We prove several results in the particular case of string triangular algebras [2]
and quadratic string algebras [3]:

(1) we find an explicit description of the generators of the Hochschild coho-
mology groups;

(2) we find an explicit description of the cup product in even degrees;
(3) if char k 6= 2 we show that HHn ∪HHm = 0 for any pair of odd natural

numbers n,m.

For string triangular algebras we prove that the cup product is always trivial
and that the Lie bracket satisfies the equality [HH1, HHn] = HHn.

Concerning the non-vanishing of these structures, we consider gentle cycles,
that is, oriented cycles α1 · · ·αn with all possible zero relations of length two and
such that for any i, αi : x → y is the unique arrow in the quiver ending at y that
is involved in a zero relation with αi+1 and, it is the unique arrow in the quiver
starting at x that is involved in a zero relation with αi−1.

If the quiver associated to the algebra does not contain gentle cycles, we can
show that the cup product is trivial for quadratic string algebras and that the
Lie bracket is trivial for gentle algebras. On the other hand, we show that these
structures are non-trivial in infinitely many degrees if the quiver contains a gentle
cycle.
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Quantizations of complete intersection surfaces and D-modules

Travis Schedler

This is a report on a work in progress. The motivation is to understand and ulti-
mately classify quantizations of complete intersections, particularly with isolated
singularities.
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Jacobian Poisson structure on complete intersection surfaces. Let
f1, . . . , fm ∈ C[x1, . . . , xn] be a regular sequence, and suppose m = n − 2. Let
X = {f1 = · · · = fm = 0} be the resulting surface (called a complete intersection
surface in Cn). Then, there is a canonical Poisson structure on Cn, given by the
bivector πJac := (∂1 ∧ · · · ∧ ∂n)(df1 ∧ · · · ∧ dfm), where ∂i :=

d
dxi

. This is parallel
to the level surfaces of f1, . . . , fm, and hence restricts to a Poisson bivector on X
itself.

Poisson homology. A Poisson algebra is defined as a commutative algebra
equipped with a Poisson bracket. Given such an algebra B, its zeroth Poisson
homology, HP0(B), is defined by HP0(B) := B/{B,B}.

Theorem 1 ([ES14]). If B = O(X) for X a complete intersection surface in Cn

with only isolated singularities, then HP0(B) ∼= H2
top(X)⊕

⊕

x∈Xsing Cµx .

In the theorem above, H2
top(X) is the topological cohomology of X in the com-

plex topology, Xsing is the singular locus, and for each singular point x ∈ Xsing,
µx denotes the Milnor number of the singularity at x.

General complete intersections. In the case of a general complete intersection
X in Cn (i.e., X = {f1 = · · · = fm = 0}, with f1, . . . , fm a regular sequence for
arbitrary m), we do not anymore get a canonical Poisson structure on X , but
we do get a canonical polyvector field of degree n − m. That is, we get the
canonical skew-symmetric multiderivation M : O(X)⊗(n−m) → O(X), given by
g1 ⊗ · · · ⊗ gn−m 7→ (∂1 ∧ · · · ∧ ∂n)(df1 ∧ · · · ∧ dfm ∧ dg1 ∧ · · · ∧ dgn−m). Then the
theorem above generalizes to:

Theorem 2 ([ES14]). If X is a complete intersection in Cn with isolated singu-
larities, then O(X)/im(M) ∼= HdimX

top (X)⊕
⊕

x∈Xsing Cµx .

We observe also that, given any additional functions g1, . . . , gn−m−2, we have a
Poisson bracket on X given by {f, g}g1,...,gn−m−2 := M(g1, . . . , gn−m−2, f, g). This
only depends on the exact n − m − 2 form α := dg1 ∧ · · · ∧ dgn−m−2, so let us
denote it by {−,−}α.

Quantization of complete intersections. By Kontsevich’s formality theorem
[Kon03] and its sequels, all Poisson structures on a smooth complex affine variety
can be quantized. A quantization of a Poisson algebra B (or of a Poisson variety
SpecB) means an associative product ⋆ on B[[~]] = {

∑

i≥0 bi~
i | bi ∈ B} such that,

for all a, b ∈ B, we have a ⋆ b− ab ∈ ~B~ and (a ⋆ b− b ⋆ a− ~{a, b}) ∈ ~2B~.
Very little is known about the case of singular varieties. However, we can prove

the following.

Proposition 3. Every Poisson structure on a complete intersection of the form
{−,−}α, for α a closed n−m− 2-form, can be quantized.

Proof. Consider the dg algebra resolution O(Cn|m) := C[x1, . . . , xn, r1, . . . , rm]
with |ri| = −1 and |xi| = 0 for all i, equipped with the differential d given by
dxi = 0 and dri = fi for all i. The Poisson bracket {−,−}α extends to this



Hochschild Cohomology in Algebra, Geometry, and Topology 501

resolution by setting brackets with ri to be zero. Then, a quantization of this
Poisson bracket can be identified with a Maurer-Cartan element in the dg Lie
algebra (Dpoly(C

n|m), d + dH). Here dH is the Hochschild differential, and the
differential d is induced from d(ri) = fi. Observe that d can also be written as the
Gerstenhaber bracket with the derivation D(xi) = 0, D(ri) = fi for all i (which is
a Maurer-Cartan element).

By Kontsevich’s formality theorem [Kon03], there is an L∞ quasi-isomorphism
Tpoly(C

n|m) → Dpoly(C
n|m). Here, Tpoly[−1] ∼= O(Cn|m)⊗C[∂x1 , . . . , ∂xn

, ∂r1 , . . . ,
∂rm ], for |∂xi

| = 1 and |∂ri | = 2. The quasi-isomorphism sends
∑

i fi∂ri to
D. Therefore by Maurer-Cartan twisting, we obtain an L∞ quasi-isomorphism
(Tpoly(C

n|m), d) → (Dpoly(C
n|m), d + dH), with dH the Hochschild differential,

and in both cases d is the differential obtained from d(ri) = fi (which identifies
with bracketing with

∑

i fi∂ri and with D, respectively).
To conclude, the Poisson bracket {−,−}α defines a Maurer-Cartan element of

(Tpoly(C
n|m), d), hence by Kontsevich’s theorem, also such an element of

(Dpoly(C
n|m), d + dH), which quantizes the resolution. Taking cohomology, we

obtain a quantization of X . �

Classification of quantizations and noncommutative Poisson cohomol-
ogy.

Definition 4. [BG92, Xu94] A noncommutative Poisson structure on an asso-

ciative algebra A is an element µ ∈ HH
2(A,A) such that [µ, µ] = 0 ∈ HH

3(A,A).
The noncommutative Poisson cohomology, denoted HP∗

nc(A, µ), is the cohomology
of (HH∗(A,A), [µ,−]).

When A = O(X) for X a Poisson variety, the above need not coincide with
usual Poisson cohomology, although this is true when X is smooth affine (where
one recovers Lichnerowicz’s definition of Poisson cohomology [Lic78]).

Given a noncommutative Poisson structure, we have a corresponding infini-
tesimal deformation of A which lifts to a second-order deformation. As we ex-
plain, the noncommutative Poisson cohomology controls deformations of A whose
infinitesimal class is µ. Recall that an n-th order deformation is an element
⋆ = µA+~µ1+~2µ2+· · ·+~nµn ∈ ~C2(A,A)[[~]] whose Gerstenhaber bracket with
itself is zero modulo ~n+1 (here µA is the multiplication on A, so [µA, x] = dHx for
all x, which dH the Hochschild differential). We say this lifts µ if the class of µ1 is
µ. An k-th order gauge equivalence between two n-th order deformations ⋆ and ⋆′

is an element γ ∈ ~kC1(A,A)[[~]], such that (1+ γ)(a ⋆ b) ≡ (1 + γ)(a) ⋆′ (1 + γ)(b)
(mod ~n+1).

Proposition 5. Given an n-th order deformation lifting µ, if a further lift to
(n + 2)-nd order exists, the space of lifts to (n + 1)-st order modulo n-th order
gauge equivalences is an affine space on HP2

nc(A, µ).

This is a variant on the standard result which says that, when a lift of an
arbitrary n-th order deformation to (n+ 1)-st order exists, the space of such lifts

modulo (n+ 1)-st order gauge equivalences is an affine space over HH2(A,A).
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Proof. Let ⋆ = µA +
∑n

i=1 ~
iµi be an n-th order deformation lifting µ. Suppose

⋆′ = µA +
∑n+2

i=1 ~iµ′
i and ⋆′′ = µA +

∑n+2
i=1 ~iµ′′

i are further lifts of ⋆ to (n + 2)-
nd order deformations, with µi = µ′

i = µ′′
i for i ≤ n. Then the coefficient of

~n+2 in [⋆′, ⋆′]− [⋆′′, ⋆′′] is dH(µ′
n+2 − µ′′

n+2) + [µ1, µ
′
n+1 − µ′′

n+1]. Also, as is well-
known, µ′

n+1 − µ′′
n+1 must be a Hochschild two-cocycle (which follows also from

the ~n+1 coefficient). Therefore, µ′
n+1 − µ′′

n+1 is a Hochschild two-cocycle whose

class in HH2(A,A) has zero bracket with µ, i.e., defines a noncommutative Poisson
two-cocycle.

Now suppose only that ⋆′ is an n + 1-st order deformation lifting ⋆. Given
γ =

∑

i≥n ~
iγi ∈ ~nC1(A,A)[[~]], let ⋆′γ be the resulting gauge equivalent (n+ 1)-

nd order deformation. Then ⋆′γ − ⋆′ ≡ dHγ + ~[γ, µ1] (mod ~)n+2. For the result
to lift ⋆ we require γn to be a two-cocycle, and in this case the coefficient of
~n+1 in ⋆′γ − ⋆′ consists of all Hochschild two-cocycles whose cohomology class is
a noncommmutative Poisson two-coboundary. �

Poisson cohomology for complete intersections. To compute the Pois-
son cohomology for complete intersections, we need to compute the Gerstenhaber
bracket on Hochschild cohomology. By the proof of Proposition 3, the latter can
be computed by H∗(Tpoly(C

n|m), d) together with the Schouten bracket on Cn|m.
In the case of m = 1, n = 3, setting f := f1, a direct computation yields the
well-known result:

HH2(O(X)) ∼= T 2
poly(X)⊕ CX ,

where we define T 2
poly(X) as the space of skew-symmetric biderivations O(X)⊗2 →

O(X), and CX := O(X)/(∂1f, ∂2f, ∂3f), called the singularity ring. Also,
HH1(O(X) = Der(O(X)) = T 1

poly(X). Setting ξ = ξg := {g,−} for some g ∈

O(X), we get [ξg, hπJac] = {g, h}πJac. This implies:

Proposition 6. If X is a surface in C3, then the space HP2
nc(O(X), [πJac]) is a

quotient of HP0(O(X))⊕ CX .

Applying Theorem 1, we obtain:

Corollary 7. If X is a hypersurface in C3 with isolated singularities, then
HP2

nc(O(X), [πJac]) is a quotient of CX ⊕H2
top(X)⊕

⊕

x∈Xsing Cµx .

In this case, we expect that a universal family of quantizations exists. Assuming
this, by Proposition 5, we obtain:

Corollary 8. The universal family of quantizations of a surface in C3 with isolated
singularities, having infinitesimal class [πJac], is parameterized by a quotient of
⊕

m≥2 ~
m(CX ⊕H2

top(X)⊕
⊕

x∈Xsing Cµx).

Note that the space HP2
nc(O(X), [πJac]) parameterizing lifts from deformations

of order n to order n+1 is finite-dimensional. In the case that πJac is weighted
homogeneous of degree zero (i.e., X is conical with an elliptic singularity), we
get that HPnc(X) ∼= CX ⊕ C, of dimension equal to one more than the Milnor
number. In this case, the universal quantization was described in [EG10] in terms
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of a quotient of a Calabi-Yau deformation of O(C3) by a central element. In the
case πJac is weighted homogeneous of negative degree, X is a du Val singularity,
and we get HPnc(X) ∼= CX , of dimension equal to the Milnor number; in this
case we expect to recover that the universal quantization coincides with the global
sections of the universal quantization of the minimal resolution of singularities X̃
(whose base of deformation is the functions on a formal neighborhood of the origin

in H2
top(X̃), also of the same dimension as HP2

nc(O(X), [πJac])).
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